Skip to main content
Log in

A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the past decades, there was considerable controversy over the Lucas–Washburn (LW) equation widely applied in capillary imbibition kinetics. Many experimental results showed that the time exponent of the LW equation is less than 0.5. Based on the tortuous capillary model and fractal geometry, the effect of tortuosity on the capillary imbibition in wetting porous media is discussed in this article. The average height growth of wetting liquid in porous media driven by capillary force following the \({\overline L _{\rm {s}}(t)\sim t^{1/{2D_{\rm {T}}}}}\) law is obtained (here D T is the fractal dimension for tortuosity, which represents the heterogeneity of flow in porous media). The LW law turns out to be the special case when the straight capillary tube (D T = 1) is assumed. The predictions by the present model for the time exponent for capillary imbibition in porous media are compared with available experimental data, and the present model can reproduce approximately the global trend of variation of the time exponent with porosity changing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (cm2)

A p :

Total pore cross-sectional area (cm2)

C 1 :

Constant, as defined by Eq. 1

C 2 :

Water absorption coefficient

d :

Euclidean dimension

D :

Fractal dimension

D f :

Pore fractal dimension

D T :

Tortuosity fractal dimension

K :

Effective permeability (Darcy)

k :

Time exponent

L f :

Actual length that the flow travels (cm)

L s :

Straight-line length (cm)

M :

Imbibed weight in porous media (g)

m :

Imbibed weight in a single capillary (g)

N wt :

Imbibed volume in porous media

n :

Pores/capillaries number

P c :

Capillary pressure (Pa)

\({\overline r }\) :

Effective radius for pores (cm)

r eff :

Statistical effective radius (cm)

S wf :

Water saturation behind imbibition front (fraction)

S wi :

Initial water saturation (fraction)

t :

Imbibition time (s)

V b :

Bulk volume

V p :

Pore volume

δ :

Pore shape factor

σ :

Surface tension (N/m)

μ :

Viscosity (Pa s)

\({\varepsilon }\) :

Measuring unit

λ:

Pore diameter (cm)

\({\phi _2}\) :

Areal porosity

\({\phi _3}\) :

Volume porosity

Ω:

Integrating region ranging the minimum to the maximum capillaries

θ :

Contact angle

ρ :

Liquid density (g/cm3)

τ :

Tortuosity

av:

Average value

max:

Maximum value

min:

Minimum value

References

  • Balankin A.S., Paredes R.G., Susarrey O., Morales D., Vacio F.C.: Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett. 96, 056101 (2006)

    Article  Google Scholar 

  • Balankin A.S., Susarrey O., Máquez Gonzáes J.: Scaling properties of pinned interfaces in fractal media. Phys. Rev. Lett. 90, 096101 (2003)

    Article  Google Scholar 

  • Barenblatt G.I., Entov V.M., Ryzhik V.M.: Theory of unsteady filtration of liquid and gases (in Russian). Nedra, Moscow (1972)

    Google Scholar 

  • Bear J.: Dynamics of fluids in porous media. Elsevier, New York (1972)

    Google Scholar 

  • Bell J.M., Cameron F.K.: The flow of liquids through capillary spaces. J. Phys. Chem. 10, 658–674 (1906)

    Article  Google Scholar 

  • Benavente D., Lock P., Ángeles García Del Cura M., Ordóñez S.: Predicting the capillary imbibition of porous rocks from microstructure. Transp. Porous Med. 49, 59–76 (2002)

    Article  Google Scholar 

  • Brú A., Pastor J.M.: Experimental characterization of hydration and pinning in bentonite clay, a swelling, heterogeneous, porous medium. Geoderma 134, 295–305 (2006)

    Article  Google Scholar 

  • Cai J.C., Yu B.M., Luo L., Mei M.F.: Capillary rise in a single tortuous capillary. Chin. Phys. Lett. 27, 054701 (2010a)

    Article  Google Scholar 

  • Cai J.C., Yu B.M., Zou M.Q., Luo L.: Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 24, 1860–1867 (2010b)

    Article  Google Scholar 

  • Comiti J., Renaud M.: A new model for determining mean structure parameters of fixed beds from pressure measurements: application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 44, 1539–1545 (1989)

    Article  Google Scholar 

  • De Boer J.J.: The wettability of scoured and dried cotton fabrics. Textile Res. J. 50, 624–631 (1980)

    Article  Google Scholar 

  • Delker T., Pengra D.B., Wong P.-z.: Interface pinning and the dynamics of capillary rise in porous media. Phys. Rev. Lett. 76, 2902–2905 (1996)

    Article  Google Scholar 

  • Dicke M., Burrough P.A.: Using fractal dimensions for characterizing tortuosity of animal trails. Physiol. Entomol. 13, 393–398 (1988)

    Article  Google Scholar 

  • Doyen P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93, 7729–7740 (1988)

    Article  Google Scholar 

  • Dubé M., Rost M., Alava M.: Conserved dynamics and interface roughening in spontaneous imbibition: A critical overview. Eur. Phys. J. B 15, 691–699 (2000)

    Article  Google Scholar 

  • Dubé M., Rost M., Elder K.R., Alava M., Majaniemi S., Ala-Nissila T.: Liquid conservation and nonlocal interface dynamics in imbibition. Phys. Rev. Lett. 83, 1628–1631 (1999)

    Article  Google Scholar 

  • Dullien F.A.L.: Porous media: fluid transport and pore structure. Academic Press, San Diego (1992)

    Google Scholar 

  • Eklund D.E., Salminen P.J.: Water transport in the blade coating process. Tappi J. 69, 116–119 (1986)

    Google Scholar 

  • Family F., Chan K.C.B., Amar J.G.: Surface disordering: growth, roughening and phase transitions. Nova Science, New York (1992)

    Google Scholar 

  • Fries N., Dreyer M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008)

    Article  Google Scholar 

  • Hammecker C., Barbiéro L., Boivin P., Maeght J.L., Diaw E.H.B.: A geometrical pore model for estimating the microscopical pore geometry of soil with infiltration measurements. Transp. Porous Med. 54, 193–219 (2004)

    Article  Google Scholar 

  • Hammecker C., Mertz J.-D., Fischer C., Jeannette D.: A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transp. Porous Med. 12, 125–141 (1993)

    Article  Google Scholar 

  • Handy L.L.: Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME 219, 75–80 (1960)

    Google Scholar 

  • Horváh V.K., Stanley H.E.: Temporal scaling of interfaces propagating in porous media. Phys. Rev. E 52, 5166–5169 (1995)

    Article  Google Scholar 

  • Huber P., Grüner S., Schäfer C., Knorr K., Kityk A.V.: Rheology of liquids in nanopores: a study on the capillary rise of water, n-Hexadecane and n-Tetracosane in mesoporous silica. Eur. Phys. J. Spec. Top. 141, 101–105 (2007)

    Article  Google Scholar 

  • Karoglou M., Moropoulou A., Giakoumaki A., Krokida M.K.: Capillary rise kinetics of some building materials. J. Colloid Interface Sci. 284, 260–264 (2005)

    Article  Google Scholar 

  • Katz , A.J. , Thompson A.H.: Fractal sandstone pores: implications for conductivity and formation. Phys. Rev. Lett. 54, 1325–1328 (1985)

    Article  Google Scholar 

  • Kopelman R., Parus S., Prasad J.: Fractal-Like exciton kinetics in porous glasses, organic membranes, and filter papers. Phys. Rev. Lett. 56, 1742–1745 (1986)

    Article  Google Scholar 

  • Koponen A., Kataja M., Timonen J.: Permeability and effective porosity of porous media. Phys. Rev. E 56, 3319–3325 (1997)

    Article  Google Scholar 

  • Kwon T.H., Hopkins A.E., O’Donnell S.E.: Dynamic scaling behavior of a growing self-affine fractal interface in a paper-towel-wetting experiment. Phys. Rev. E 54, 685–690 (1996)

    Article  Google Scholar 

  • Lam C.H., Lam C.H., Lam C.H.: Pipe network model for scaling of dynamic interfaces in porous media. Phys. Rev. Lett. 85, 1238–1241 (2000)

    Article  Google Scholar 

  • Laughlin R.D., Davis J.E.: Some aspects of capillary absorption in fibrous textile wicking. Textile Res. J. 31, 904–910 (1961)

    Article  Google Scholar 

  • Leventis A., Verganelakis D.A., Halse M.R., Webber J.B., Strange J.H.: Capillary imbibition and pore characterisation in eement pastes. Transp. Porous Med. 39, 143–157 (2000)

    Article  Google Scholar 

  • Li K.W.: Scaling of spontaneous imbibition data with wettability included. J. Contam. Hydrol. 89, 218–230 (2007)

    Article  Google Scholar 

  • Li K.W., Chow K., Horne N.: Influence of initial water saturation on recovery by spontaneous imbibition in Gas/Water/Rock systems and the calculation of relative permeability. SPE Res. Eval. Eng. 9, 295–301 (2006)

    Google Scholar 

  • Li K.W., Li K.W., Li K.W.: Characterization of spontaneous water imbibition into gas-saturated rocks. SPEJ 6, 375–384 (2001)

    Google Scholar 

  • Li K.W., Horne R.N.: An analytical scaling method for spontaneous imbibition in gas–water–rock systems. SPEJ 9, 322–329 (2004)

    Article  Google Scholar 

  • Lucas R.: Rate of capillary ascension of liquids. Kolloid-Zeitschrift 23, 15–22 (1918)

    Article  Google Scholar 

  • Lundblad A., Bergman B.: Determination of contact-angle in porous molten-carbonate fuel-cell Electrodes. J. Electrochem. Soc. 144, 984–987 (1997)

    Article  Google Scholar 

  • Ma S., Morrow N.R., Zhang X.: Generalized scaling of spontaneous imbibition data for strongly water-wet systems. In: Paper 95–138, presented at the 6th Petroleum Conference of the South Saskatchewan Section, the Petroleum Society of CIM, held in Regina, 16–18 Oct, 1995

  • Majumdar A.: Role of fractal geometry in the study of thermal phenomena. Annu. Rev. Heat. Trans. 4, 51–110 (1992)

    Google Scholar 

  • Perfect E., Kay B.D.: Fractal theory applied to soil aggregation. Soil Sci. Soc. Am. J. 55, 1552–1558 (1991)

    Article  Google Scholar 

  • Shou D.H., Fan J.T., Ding F.: A difference-fractal model for the permeability of fibrous porous media. Phys. Lett. A. 374, 1201–1204 (2010)

    Article  Google Scholar 

  • Washburn E.W.: Dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  • Wheatcraft S.W., Tyler S.W.: An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24, 566–578 (1988)

    Article  Google Scholar 

  • XiaoB.Q. Gao S.H., Chen L.X.: A fractal model for nucleate pool boiling of nanofluids at high heat flux including CHF. Fractals 18, 409–415 (2010a)

    Article  Google Scholar 

  • Xiao B.Q., Jiang G.P., Chen L.X.: A fractal study for nucleate pool boiling heat transfer of nanofluids. Sci. China Phys. Mech. Astron. 53, 30–37 (2010b)

    Article  Google Scholar 

  • Xu P., Yu B.M.: Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31, 74–81 (2008)

    Article  Google Scholar 

  • Yu B.M.: Fractal character for tortuous streamtubes in porous media. Chin. Phys. Lett. 22, 158–160 (2005)

    Article  Google Scholar 

  • Yu B.M.: Analysis of flow in fractal porous media. Appl. Mech. Rev. 61, 050801 (2008)

    Article  Google Scholar 

  • Yu B.M., Cai J.C., Zou M.Q.: On the physical properties of apparent two-phase fractal porous media. Vadose Zone J. 8, 177–186 (2009)

    Article  Google Scholar 

  • Yu B.M., Cheng P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Trans. 45, 2983–2993 (2002)

    Article  Google Scholar 

  • Yu B.M., Lee L.J., Cao H.Q.: A fractal in-plane permeability model for fabrics. Polym. Compos. 22, 201–221 (2002)

    Article  Google Scholar 

  • Yu B.M., Li J.H.: Some fractal characters of porous media. Fractals 9, 365–372 (2001)

    Article  Google Scholar 

  • Yu B.M., Li J.H.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21, 1569–1571 (2004)

    Article  Google Scholar 

  • Yun M.J., Yu B.M., Cai J.C.: Analysis of seepage characters in fractal porous media. Int. J. Heat Mass Trans. 52, 3272–3278 (2009)

    Article  Google Scholar 

  • Zhao, H.Y., Li, K.W.: A fractal model of production by spontaneous water imbibition. In: SPE119525, presented at the Latin American and Caribbean Petroleum Engineering Conference held in Cartagena, 31 May– 3 June, 2009

  • Zhou L., Selim H.M.: A conceptual fractal model for describing time-dependent dspersivity. Soil Sci. 167, 173–183 (2002)

    Article  Google Scholar 

  • Zhuang Q., Harlock S.C., Brook D.B.: Longitudinal wicking of weft knitted fabrics: part II: wicking mechanism of knitted fabrics used in undergarments for outdoor activities. J. Textile Inst. 93, 97–107 (2002)

    Article  Google Scholar 

  • Zimmerman R.W., Bodvarsson G.S.: A simple approximate solution for horizontal infiltration in a Brooks–Corey medium. Transp. Porous Med. 6, 195–205 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boming Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Yu, B. A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transp Porous Med 89, 251–263 (2011). https://doi.org/10.1007/s11242-011-9767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9767-0

Keywords

Navigation