Skip to main content
Log in

Information Leakage in Quantum Secret Sharing of Multi-Bits by an Entangled Six-Qubit State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In a recent paper Long et al. (J. Phys. A: Math. Theor. 45: 195303, 2012), a quantum secret sharing protocol was presented, in which the genuinely maximally entangled six-qubit states were used. According to the protocol, Alice could share three bits among three agents, which showed that it was more efficient than previous protocols. Here, we analyze it and point out that the information about the transmitted secret will be partly leaked out unknowingly. Through the classical public channel, 2/3 of Alice’s secret messages is leaked out to Bob1 and Bob2, and 1/3 secret messages is leaked out to Bob3, respectively. This phenomenon should be strictly forbidden in a quantum secret sharing protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brierley, S., Higuchi, A.: On maximal entanglement between two pairs in four-qubit pure states. J. Phys. A: Math. Theor 40, 8455 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Brown, I. D. K., Stepney, S., Sudbery, A., Braunstein, S. L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Theor 38, 1119 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Helwig, W., Cui, W., Latorre, J. I., Riera, A., Lo, H. K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)

    Article  ADS  Google Scholar 

  5. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bennett, C. H., Wiesner, S. J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Ekert, A. K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H. K.: How to share a quantum secret. Phys. Rev. Lett. 82, 648 (1999)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gottesman, D.: Theory of quantum secret sharing. Physical Review A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Anderson, C. A. N., Mueller-Quade, J., Imai H: Improving quantum secret-sharing schemes. Phys. Rev. A 64 (2001)

  12. Guo, G. P., Guo, G. C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Zhang, Z. J., Man, Z. X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lin, S., Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Comment on multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Sun, Y., Wen, Q. Y., Gao, F., Chen, X. B., Zhu F. C.: Opt. Commun. 282, 3647

  16. Sarvepalli, P. K., Klappenecker, A.: Sharing classical secrets with Calderbank-Shor-Steane codes. Phys. Rev. A 80, 022321 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Keet, A., Fortescue, B., Markham, D., Barry, S. C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 062315 (2010)

    Article  ADS  Google Scholar 

  18. Li, Q., Chan, W. H., Long, D. Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)

    Article  ADS  Google Scholar 

  19. Borras, A., Plastino, A. R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multi-qubit systems: highly entangled states and entanglement distribution. J. Phys. A: Math. Theor 40, 13407 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Long, Y. X., Qiu, D. W., Long, D. Y.: Quantum secret sharing of multi-bits by an entangled six-qubit state. J. Phys. A: Math. Theor 45, 195303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hao, L., Li, J. L., Long, G. L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491 (2010)

    Article  ADS  Google Scholar 

  22. Qin, S. J., Gao, F., Wen, Q. Y., Zhu, F. C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  23. Cai, Q. Y.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett 91, 109801 (2003)

    Article  ADS  Google Scholar 

  24. Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  25. Gao, F., Wen, Q. Y., Zhu, F. C.: Comment on: Quantum exam [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  26. Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Comment on “Colloidal Interactions and Transport in Nematic Liquid Crystals”. Phys. Rev. Lett 101, 208901 (2008)

    Article  ADS  Google Scholar 

  27. Gao, F., Qin, S. J., Wen, Q. Y., Zhu, F. C.: A simple participant attack on the Bradler-Dusek protocol. Quant. Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Deng, F. G., Li, X. H., Zhou, H. Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  29. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  30. Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G-Phys. Mech. Astron. 51, 559 (2008)

    Article  ADS  Google Scholar 

  31. Tan, Y. G., Cai, Q. Y.: Classical correlation in quantum dialogue. Int. J. Quantum. Inf. 6, 325 (2008)

    Article  Google Scholar 

  32. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. A 89, 187902 (2002)

    Article  ADS  Google Scholar 

  33. Nguyen, B. A.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Long, Y. X., Qiu, D. W., Long, D. Y.: Perfect teleportation between arbitrary split of six partites by a genuinely maximally entangled six-qubit state. Int. J. Quantum. Inf 8, 821 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, SJ., Liu, F. Information Leakage in Quantum Secret Sharing of Multi-Bits by an Entangled Six-Qubit State. Int J Theor Phys 53, 3116–3123 (2014). https://doi.org/10.1007/s10773-014-2108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2108-7

Keywords

Navigation