Skip to main content

Advertisement

Log in

The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is characterized by a rapid loss of kidney function and an antigen-independent inflammatory process that causes tissue damage, which was one of the main manifestations of kidney ischemia/reperfusion (I/R). Recent studies have demonstrated autophagy participated in the pathological process of acute kidney injury. In this study, we discuss how autophagy regulated inflammation response in the kidney I/R. AKI was performed by renal I/R. Autophagy activator rapamycin (Rap) and inhibitor 3-methyladenine (MA) were used to investigate the role of autophagy on kidney function and inflammation response. After the experiment, kidney tissues were obtained for the detection of autophagy-related protein microtubule-associated protein light chain 3(LC3)II, Beclin1, and Rab7 and lysosome-associated membrane protein type (LAMP)2 protein by reverse transcription-polymerase chain reaction (PT-PCR) and Western blotting, and histopathology and tissue injury scores also. The blood was harvested to measure kidney function (creatinine (Cr) and blood urea nitrogen (BUN) levels) after I/R. Cytokines TNF-α, IL-6, HMGB1, and IL-10 were measured after I/R. I/R induced the expression of LC3II, Beclin1, LAMP2, and Rab7. The activation and inhibition of autophagy by rapamycin and 3-MA were promoted and attenuated histological and renal function in renal I/R rats, respectively. Cytokines TNF-α, IL-6, and HMGB1 were decreased, and IL-10 was further increased after activation of autophagy treated in I/R rats, while 3-MA exacerbated the pro-inflammatory cytokines TNF-α, IL-6, HMGB1, and anti-inflammatory cytokine IL-10 in renal I/R. I/R can activated the autophagy, and autophagy increase mitigated the renal injury by decreasing kidney injury score, levels of Cr and BUN after renal I/R, and inflammation response via regulating the balance of pro-inflammation and anti-inflammation cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

AKI:

Acute kidney injury

BUN:

Blood urea nitrogen

BW:

Body Weight

Cr:

Creatinine

ELISA:

Enzyme-linked immunosorbent assay

HMGB1:

High mobility group box 1

HRP:

Horse reddish peroxidase

IL:

Interleukin

I/R:

Ischemia/reperfusion

LAMP:

Lysosome-associated membrane protein type

LC3:

Microtubule-associated protein light chain 3

RT:

Room temperature

RT-PCR:

Transcription-polymerase chain reaction

TNF:

Tumor necrosis factor

REFERENCES

  1. Kunzendorf, U., M. Haase, L. Rolver, and A. Haase-Fielitz. 2010. Novel aspects of pharmacological therapies for acute renal failure. Drugs 70: 1099–1114.

    Article  CAS  PubMed  Google Scholar 

  2. Mangano, C.M., L.S. Diamondstone, J.G. Ramsay, A. Aggarwal, A. Herskowitz, and D.T. Mangano. 1998. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Annals of Internal Medicine 128: 194–203.

    Article  CAS  PubMed  Google Scholar 

  3. Aydin, Z., A.J. van Zonneveld, J.W. de Fijter, and T.J. Rabelink. 2007. New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrology, Dialysis, Transplantation 22: 342–346.

    Article  PubMed  Google Scholar 

  4. Chertow, G.M., E. Burdick, M. Honour, J.V. Bonventre, and D.W. Bates. 2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology 16: 3365–3370.

    Article  PubMed  Google Scholar 

  5. Kazmers, A., L. Jacobs, and A. Perkins. 1997. The impact of complications after vascular surgery in Veterans Affairs Medical Centers. Journal of Surgical Research 67: 62–66.

    Article  CAS  PubMed  Google Scholar 

  6. Levy, E.M., C.M. Viscoli, and R.I. Horwitz. 1996. The effect of acute renal failure on mortality. A cohort analysis. JAMA 275: 1489–1494.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, J., J.H. Li, L. Wang, M. Han, F. Xiao, X.Q. Lan, et al. 2014. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. Journal of Huazhong University of Science and Technology. Medical Sciences 34: 516–520.

    Article  Google Scholar 

  8. Schiffl, H., S.M. Lang, and R. Fischer. 2002. Daily hemodialysis and the outcome of acute renal failure. The New England Journal of Medicine 346: 305–310.

    Article  PubMed  Google Scholar 

  9. Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  10. Gabay, C., and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340: 448–454.

    Article  CAS  PubMed  Google Scholar 

  11. Grams, M.E., and H. Rabb. 2012. The distant organ effects of acute kidney injury. Kidney International 81: 942–948.

    Article  PubMed  Google Scholar 

  12. Hotta, O., N. Yusa, M. Ooyama, K. Unno, T. Furuta, and Y. Taguma. 1999. Detection of urinary macrophages expressing the CD16 (Fc gamma RIII) molecule: a novel marker of acute inflammatory glomerular injury. Kidney International 55: 1927–1934.

    Article  CAS  PubMed  Google Scholar 

  13. Akcay, A., Q. Nguyen, and C.L. Edelstein. 2009. Mediators of inflammation in acute kidney injury. Mediators of Inflammation 2009: 137072.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee, D.W., S. Faubel, and C.L. Edelstein. 2011. Cytokines in acute kidney injury (AKI). Clinical Nephrology 76: 165–173.

    Article  CAS  PubMed  Google Scholar 

  15. Molitoris, B.A., and T.A. Sutton. 2004. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney International 66: 496–499.

    Article  PubMed  Google Scholar 

  16. Umehara, H., S. Goda, T. Imai, Y. Nagano, Y. Minami, Y. Tanaka, et al. 2001. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunology and Cell Biology 79: 298–302.

    Article  CAS  PubMed  Google Scholar 

  17. Gottlieb, R.A., and R.M. Mentzer. 2010. Autophagy during cardiac stress: joys and frustrations of autophagy. Annual Review of Physiology 72: 45–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Glick, D., S. Barth, and K.F. Macleod. 2010. Autophagy: cellular and molecular mechanisms. The Journal of Pathology 221: 3–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yorimitsu, T., and D.J. Klionsky. 2005. Autophagy: molecular machinery for self-eating. Cell Death and Differentiation 12(Suppl 2): 1542–1552.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chien, C.T., S.K. Shyue, and M.K. Lai. 2007. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84: 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, H.H., T.Y. Hsiao, C.T. Chien, and M.K. Lai. 2009. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. Journal of Biomedical Science 16: 19.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Suzuki, C., Y. Isaka, Y. Takabatake, H. Tanaka, M. Koike, M. Shibata, et al. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochemical and Biophysical Research Communications 368: 100–106.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, M., K. Liu, J. Luo, and Z. Dong. 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. American Journal of Pathology 176: 1181–1192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lo, S., S.S. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, et al. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257: 352–363.

    Article  PubMed  Google Scholar 

  25. Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253: 1190–1200.

    Article  PubMed  Google Scholar 

  26. Takahashi, W., E. Watanabe, L. Fujimura, H. Watanabe-Takano, H. Yoshidome, P.E. Swanson, et al. 2013. Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Critical Care 17: R160.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chiang, C.K., M.L. Sheu, Y.W. Lin, C.T. Wu, C.C. Yang, M.W. Chen, et al. 2011. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. British Journal of Pharmacology 163: 586–597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wu, C.T., M.L. Sheu, K.S. Tsai, C.K. Chiang, and S.H. Liu. 2011. Salubrinal, an eIF2alpha dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radical Biology and Medicine 51: 671–680.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Z.H., W.Y. Ren, L. Zhu, and L.J. Hu. 2014. Plasminogen activator inhibitor-1 regulates LPS induced inflammation in rat macrophages through autophagy activation. ScientificWorldJournal 2014: 189168.

    PubMed Central  PubMed  Google Scholar 

  30. Perico, N., D. Cattaneo, M.H. Sayegh, and G. Remuzzi. 2004. Delayed graft function in kidney transplantation. Lancet 364: 1814–1827.

    Article  PubMed  Google Scholar 

  31. Bellomo, R., J.A. Kellum, and C. Ronco. 2012. Acute kidney injury. Lancet 380: 756–766.

    Article  PubMed  Google Scholar 

  32. Huber, T.B., C.L. Edelstein, B. Hartleben, K. Inoki, M. Jiang, D. Koya, et al. 2012. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8: 1009–1031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Linkermann, A., J.H. Brasen, N. Himmerkus, S. Liu, T.B. Huber, U. Kunzendorf, et al. 2012. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney International 81: 751–761.

    Article  CAS  PubMed  Google Scholar 

  34. Mizushima, N. 2007. Autophagy: process and function. Genes and Development 21: 2861–2873.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh, Y.C., M. Athar, and I.H. Chaudry. 2009. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends in Molecular Medicine 15: 129–138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhong, Y., Q.J. Wang, X. Li, Y. Yan, J.M. Backer, B.T. Chait, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology 11: 468–476.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Saftig, P., and E.L. Eskelinen. 2008. Live longer with LAMP-2. Nature Medicine 14: 909–910.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y.L., Y.J. Cao, X. Zhang, H.H. Liu, T. Tong, G.D. Xiao, et al. 2010. The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochemical and Biophysical Research Communications 394: 377–382.

    Article  CAS  PubMed  Google Scholar 

  39. Gutierrez, M.G., D.B. Munafo, W. Beron, and M.I. Colombo. 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of Cell Science 117: 2687–2697.

    Article  CAS  PubMed  Google Scholar 

  40. Land, W.G. 2005. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation 79: 505–514.

    Article  PubMed  Google Scholar 

  41. Serteser, M., T. Koken, A. Kahraman, K. Yilmaz, G. Akbulut, and O.N. Dilek. 2002. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. Journal of Surgical Research 107: 234–240.

    Article  CAS  PubMed  Google Scholar 

  42. Ysebaert, D.K., K.E. De Greef, S.R. Vercauteren, M. Ghielli, G.A. Verpooten, E.J. Eyskens, et al. 2000. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrology, Dialysis, Transplantation 15: 1562–1574.

    Article  CAS  PubMed  Google Scholar 

  43. Facio, F.J., A.A. Sena, L.P. Araujo, G.E. Mendes, I. Castro, M.A. Luz, et al. 2011. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. Journal of Molecular Medicine (Berlin) 89: 51–63.

    Article  CAS  Google Scholar 

  44. Bolisetty, S., and A. Agarwal. 2009. Neutrophils in acute kidney injury: not neutral any more. Kidney International 75: 674–676.

    Article  CAS  PubMed  Google Scholar 

  45. Jing, X.X., Z.G. Wang, H.T. Ran, L. Li, X. Wu, X.D. Li, et al. 2008. Evaluation of renal ischemia-reperfusion injury in rabbits using microbubbles targeted to activated neutrophils. Clinical Imaging 32: 178–182.

    Article  PubMed  Google Scholar 

  46. Dessing, M.C., W.P. Pulskens, G.J. Teske, L.M. Butter, T. van der Poll, H. Yang, et al. 2012. RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury. Journal of Innate Immunity 4: 80–85.

    Article  CAS  PubMed  Google Scholar 

  47. Xue, L., K. Xie, X. Han, Z. Yang, J. Qiu, Z. Zhao, et al. 2011. Detrimental functions of IL-17A in renal ischemia-reperfusion injury in mice. Journal of Surgical Research 171: 266–274.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, M., L. Li, L. Li, G. Pokhrel, G. Qi, R. Rong, et al. 2014. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis. BMC Complementary and Alternative Medicine 14: 19.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by research grants from the National Natural Science Foundation of China (81372033, 81471842) and the Natural Science Foundation of the Tianjin Science Committee (13JCQNJC11400).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghao Yu or Keliang Xie.

Additional information

Haibin Ling, Hongguang Chen and Miao Wei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, H., Chen, H., Wei, M. et al. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 39, 347–356 (2016). https://doi.org/10.1007/s10753-015-0255-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0255-5

KEY WORDS

Navigation