Skip to main content

Advertisement

Log in

Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia–reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 μg) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E et al (2005) Beginning and ending supportive therapy for the kidney (BEST Kidney) investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  2. Gwinner W, Hinzmann K, Erdbruegger U, Scheffner I, Broecker V, Vaske B, Kreipe H, Haller H, Schwarz A, Mengel M (2000) Acute tubular injury in protocol biopsies of renal grafts: prevalence, associated factors and effect on long-term function. Am J Transplant 8:1684–1693

    Article  Google Scholar 

  3. Lu CY, Hartono J, Senitko M, Chen J (2007) The inflammatory response to ischemic acute kidney injury: a result of the ‘right stuff’ in the ‘wrong place’? Curr Opin Nephrol Hypertens 16:83–89

    Article  PubMed  Google Scholar 

  4. Bonventre JV (2007) Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation. Contrib Nephrol 156:39–46

    Article  CAS  PubMed  Google Scholar 

  5. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:503–1520

    Article  Google Scholar 

  6. Willinger CC, Schramek H, Pfaller K, Pfaller W (1992) Tissue distribution of neutrophils in postischemic acute renal failure. Virchows Arch B Cell Pathol Incl Mol Pathol 62:237–243

    Article  CAS  PubMed  Google Scholar 

  7. Koo DD, Welsh KI, Roake JA, Morris PJ, Fuggle SV (1998) Ischemia/reperfusion injury in human kidney transplantation: an immunohistochemical analysis of changes after reperfusion. Am J Pathol 153:557–566

    CAS  PubMed  Google Scholar 

  8. Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574

    Article  CAS  PubMed  Google Scholar 

  9. Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491

    Article  PubMed  Google Scholar 

  10. Singbartl K, Ley K (2004) Leukocyte recruitment and acute renal failure. J Mol Med 82:91–101

    Article  PubMed  Google Scholar 

  11. Riera M, Torras J, Herrero I, Valles J, Paubert-Braquet M, Cruzado JM, Alsina J, Grinyo JM (1997) Neutrophils accentuate renal cold ischemia–reperfusion injury. Dose-dependent protective effect of a platelet-activating factor receptor antagonist. J Pharmacol Exp Ther 280:786–794

    CAS  PubMed  Google Scholar 

  12. Park P, Haas M, Cunningham PN, Bao L, Alexander JJ, Quigg RJ (2002) Injury in renal ischemia–reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol 282:F352–F357

    PubMed  Google Scholar 

  13. Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, Tang WW (2000) Pathophysiological role of T lymphocytes in renal ischemia–reperfusion injury in mice. Am J Physiol Renal Physiol 279:F525–F531

    CAS  PubMed  Google Scholar 

  14. Jo SK, Sung SA, Cho WY, Go KJ, Kim HK (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21:1231–1239

    Article  CAS  PubMed  Google Scholar 

  15. Rabb H (2006) Immune modulation of acute kidney injury. J Am Soc Nephrol 17:604–606

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y, Rabb H, Womer KL (2007) Ischemia–reperfusion and immediate T cell responses. Cell Immunol 248:4–11

    CAS  PubMed  Google Scholar 

  17. Perretti M, Flower RJ (2004) Annexin 1 and the biology of the neutrophil. J Leukoc Biol 76:25–29

    Article  CAS  PubMed  Google Scholar 

  18. Oliani SM, Christian HC, Manston J, Flower RJ, Perretti M (2000) An immunocytochemical and in situ hybridization analysis of annexin 1 expression in rat mast cells: modulation by inflammation and dexamethasone. Lab Invest 80:1429–1438

    CAS  PubMed  Google Scholar 

  19. Oliani SM, Paul-Clark MJ, Christian H, Flower RJ, Perretti M (2001) Neutrophil interaction with inflamed post-capillary venule endothelium alters annexin 1 expression. Am J Phatol 158:603–615

    CAS  Google Scholar 

  20. Kamal AM, Flower RJ, Perretti M (2005) An overview of the effects of annexin 1 on cells involved in the inflammatory process. Mem Inst Oswaldo Cruz 100(Suppl 1):39–47

    CAS  PubMed  Google Scholar 

  21. Cuzzocrea S, Tailor A, Zingarelli B, Salzman AL, Flower RJ, Szabó C, Perretti M (1997) Lipocortin 1 protects against splanchnic artery occlusion and reperfusion injury by affecting neutrophil migration. J Immunol 159:5089–5097

    CAS  PubMed  Google Scholar 

  22. D’Amico M, Di Filippo C, La M, Solito E, McLean PG, Flower RJ, Oliani SM, Perretti M (2000) Lipocortin 1 reduces myocardial ischemia–reperfusion injury by affecting local leukocyte recruitment. FASEB J 14:1867–1869

    PubMed  Google Scholar 

  23. La M, D’Amico M, Bandiera S, Di Filippo C, Oliani SM, Gavins FN, Flower RJ, Perretti M (2001) Annexin 1 peptides protect against experimental myocardial ischemia–reperfusion: analysis of their mechanism of action. FASEB J 15:2247–2256

    Article  CAS  PubMed  Google Scholar 

  24. Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M (2007) Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J 21:1751–1758

    Article  CAS  PubMed  Google Scholar 

  25. Teoh NC, Ito Y, Field J, Bethea NW, Amr D, McCuskey MK, McCuskey RS, Farrell GC, Allison AC (2007) Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia–reperfusion injury in mice. Gastroenterology 133:632–646

    Article  CAS  PubMed  Google Scholar 

  26. Shen XD, Ke B, Zhai Y, Tsuchihashi SI, Gao F, Duarte S, Coito A, Busuttil RW, Allison AC, Kupiec-Weglinski JW (2007) Diannexin, a novel annexin V homodimer, protects rat liver transplants against cold ischemia–reperfusion injury. Am J Transplant 7:2463–2471

    Article  CAS  PubMed  Google Scholar 

  27. Ahluwalia A, Buckingham JC, Croxtall JD, Flower RJ, Goulding NJ, Perretti M (1996) Biology of annexin 1. In: Seaton BA (ed) Annexins: molecular structure to cellular function. Landes, Austin, pp 161–199

    Google Scholar 

  28. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  CAS  PubMed  Google Scholar 

  29. Solito E, Kamal A, Russo-Marie F, Buckingham JC, Marullo S, Perretti M (2003) A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J 17:1544–1546

    CAS  PubMed  Google Scholar 

  30. Mancuso F, Flower RJ, Perretti M (1995) Leukocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post-capillary venule. Involvement of endogenous lipocortin 1. J Immunol 155:377–386

    CAS  PubMed  Google Scholar 

  31. Lim LH, Solito E, Russo-Marie F, Flower RJ, Perretti M (1998) Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin 1. Proc Natl Acad Sci USA 95:14535–14539

    Article  CAS  PubMed  Google Scholar 

  32. Gavins FN, Yona S, Kamal AM, Flower RJ, Perretti M (2003) Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101:4140–4147

    Article  CAS  PubMed  Google Scholar 

  33. McKanna JA, Chuncharunee A, Munger KA, Breyer JA, Cohen S, Harris RC (1992) Localization of p35 (annexin I, lipocortin I) in normal adult rat kidney and during recovery from ischemia. J Cell Physiol 153:467–476

    Article  CAS  PubMed  Google Scholar 

  34. Soubhia RM, Mendes GE, Mendonça FZ, Baptista MA, Cipullo JP, Burdmann EA (2005) Tacrolimus and nonsteroidal anti-inflammatory drugs: an association to be avoided. Am J Nephrol 25:327–334

    Article  CAS  PubMed  Google Scholar 

  35. Yu L, Gengaro PE, Niederberger M, Burke TJ, Schrier RW (1994) Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci USA 91:1691–1695

    Article  CAS  PubMed  Google Scholar 

  36. Damazo AS, Yona S, Flower RJ, Perretti M, Oliani SM (2006) Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. J Immunol 176:4410–4418

    CAS  PubMed  Google Scholar 

  37. Babbin BA, Parkos CA, Mandell KJ, Winfree LM, Laur O, Ivanov AI, Nusrat A (2007) Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling. Am J Pathol 170:951–966

    Article  CAS  PubMed  Google Scholar 

  38. Babbin BA, Laukoetter MG, Nava P, Koch S, Lee WY, Capaldo CT, Peatman E, Severson EA, Flower RJ, Perretti M, Parkos CA, Nusrat A (2008) Annexin A1 regulates intestinal mucosal injury, inflammation, and repair. J Immunol 181:5035–5544

    CAS  PubMed  Google Scholar 

  39. McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C (2002) Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 16:1817–1819

    CAS  PubMed  Google Scholar 

  40. Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485

    Article  CAS  PubMed  Google Scholar 

  41. Chatterjee BE, Yona S, Rosignoli G, Young RE, Nourshargh S, Flower RJ, Perretti M (2005) Annexin 1-deficient neutrophils exhibit enhanced transmigration in vivo and increased responsiveness in vitro. J Leukoc Biol 78:639–646

    Article  CAS  PubMed  Google Scholar 

  42. Paller MS (1989) Effect of neutrophil depletion on ischemic renal injury in the rat. J Lab Clin Med 113:379–386

    CAS  PubMed  Google Scholar 

  43. Vries B, Köhl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA (2003) Complement factor C5a mediates renal ischemia–reperfusion injury independent from neutrophils. J Immunol 170:3883–3889

    PubMed  Google Scholar 

  44. Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemia–reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255:F728–F735

    CAS  PubMed  Google Scholar 

  45. Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063

    Article  CAS  PubMed  Google Scholar 

  46. Perretti M, Gavins FNE (2003) Annexin 1: an endogenous anti-inflammatory protein. News Physiol Sci 18:60–64

    CAS  PubMed  Google Scholar 

  47. Kielar ML, John R, Bennett M, Richardson JA, Shelton JM, Chen L, Jeyarajah DR, Zhou XJ, Zhou H, Chiquett B et al (2005) Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 16:3315–3325

    Article  CAS  PubMed  Google Scholar 

  48. Day YJ, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia–reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288:F722–F731

    Article  CAS  PubMed  Google Scholar 

  49. Ko GJ, Boo CS, Jo SK, Cho WY, Kim HK (2008) Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 23:842–852

    Article  CAS  PubMed  Google Scholar 

  50. Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A (2008) Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol 214:104–113

    Article  CAS  PubMed  Google Scholar 

  51. Suleiman M, Cury PM, Pestana JO, Burdmann EA, Bueno V (2005) FTY720 prevents renal T-cell infiltration after ischemia/reperfusion injury. Transplant Proc 37:373–374

    Article  CAS  PubMed  Google Scholar 

  52. Faubel S, Ljubanovic D, Poole B, Dursun B, He Z, Cushing S, Somerset H, Gill RG, Edelstein CL (2005) Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure. Transplantation 80:643–649

    Article  PubMed  Google Scholar 

  53. Yokota N, Burne-Taney M, Racusen L, Rabb H (2003) Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia–reperfusion injury. Am J Physiol Renal Physiol 285:F319–F325

    CAS  PubMed  Google Scholar 

  54. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR (1999) Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia–reperfusion. Am J Physiol 277:R922–R929

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

EA Burdmann and S. M. Oliani are partially supported by grants from Foundation for the Support of Research in the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo) and from the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process 307371/2006-9 and 306074/2007-9, respectively). The authors are grateful to Livia C. Burdmann for the excellent grammar review of the manuscript.

Conflicts of interest

The authors have no competing financial interests to disclose in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Maria Oliani or Emmanuel A. Burdmann.

Additional information

Emmanuel A. Burdmann and Sonia Maria Oliani share senior authorship of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facio, F.N., Sena, A.A., Araújo, L.P. et al. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med 89, 51–63 (2011). https://doi.org/10.1007/s00109-010-0684-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0684-4

Keywords

Navigation