Skip to main content
Log in

Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carl DE, Grossman C, Behnke M, et al. Effect of timing of dialysis on mortality in critically ill, septic patients with acute renal failure. Hemodial Int, 2010,14(1):11–17

    Article  PubMed  Google Scholar 

  2. Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol, 2011,22(6):999–1006

    Article  PubMed  Google Scholar 

  3. Leibowitz AB. Hypovolemia is not a common cause of acute kidney injury. Crit Care Med, 2010,38(6):1505–1506

    PubMed  Google Scholar 

  4. Chronopoulos A, Rosner MH, Cruz DN, et al. Acute kidney injury in the elderly: a review. Contrib Nephrol, 2010,165:315–321

    Article  PubMed  Google Scholar 

  5. van den Akker EK, Manintveld OC. Protection against renal ischemia-reperfusion injury by ischemic postconditioning. Transplantation, 2013,95(11):1299–1305

    Article  PubMed  Google Scholar 

  6. van der Vliet JA, Warle MC. The need to reduce cold ischemia time in kidney transplantation. Curr Opin Organ Transplant, 2013,18(2):174–178

    Article  PubMed  Google Scholar 

  7. McQuarrie EP, Fellstrom BC, Holdaas H, et al. Cardiovascular disease in renal transplant recipients. J Ren Care, 2013,36(1):136–145

    Google Scholar 

  8. Yap SC, Lee HT. Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens, 2012,12(1):24–32

    Google Scholar 

  9. Kim JI, Jang HS, Park KM. Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion. BMB Rep, 2012,43(9):629–634

    Article  Google Scholar 

  10. Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol, 2012,1(1):244–257

    Article  Google Scholar 

  11. Schneider R, Raff U, Vornberger N, et al. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int, 2003,64(1):216–225

    Article  CAS  PubMed  Google Scholar 

  12. Schramm L, La M, Heidbreder E, et al. L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int, 2002,61(4):1423–1432

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Xing B, Liu X, et al. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury: the role of nitric oxide. J Surg Res, 2008,149(2):287–295

    Article  CAS  PubMed  Google Scholar 

  14. Urner M, Herrmann IK, Booy C, et al. Effect of hypoxia and dexamethasone on inflammation and ion transporter function in pulmonary cells. Clin Exp Immunol, 2012,169(2):119–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Das A, Salloum FN, Xi L, et al. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol, 2009,296(5):H1236–H1243

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bladh LG, Johansson-Haque K, Rafter I, et al. Inhibition of extracellular signal-regulated kinase (ERK) signaling participates in repression of nuclear factor (NF)-kappaB activity by glucocorticoids. Biochim Biophys Acta, 2009,1793(3):439–446

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Allen DA, Kieswich JE, et al. Dexamethasone ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol, 2009, 20(11):2412–2425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Rouillard C, Chiodo LA, Freeman AS. The effects of the phencyclidine analogs BTCP and TCP on nigrostriatal dopamine neuronal activity. Eur J Pharmacol, 1990,182(2):227–235

    Article  CAS  PubMed  Google Scholar 

  19. Zheng X, Feng B, Chen G, et al. Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene. Am J Transplant, 2006,6(9):2099–2108

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz D, Mendonca M, Schwartz I, et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest, 1997,100(2):439–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wessells H, Teal TH, Luttrell IP, et al. Effect of endothelial cell-based iNOS gene transfer on cavernosal eNOS expression and mouse erectile responses. Int J Impot Res, 2003,18(5):438–445

    Article  Google Scholar 

  22. Sampaio AL, Dalli J, Brancaleone V, et al. Biphasic modulation of NOS expression, protein and nitrite products by hydroxocobalamin underlies its protective effect in endotoxemic shock: downstream regulation of COX-2, IL-1beta, TNF-alpha, IL-6, and HMGB1 expression. Mediators Inflamm, 2013,3(1):791–804

    Google Scholar 

  23. Sanchez-Pozos K, Bobadilla NA. Is aldosterone a modulator of vascular tone. Rev Invest Clin, 2013,64(7):546–557

    Google Scholar 

  24. Kielstein A, Tsikas D, Galloway GP, et al. Asymmetric dimethylarginine (ADMA)—a modulator of nociception in opiate tolerance and addiction? Nitric Oxide, 2007,17(2):55–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Goligorsky MS, Brodsky SV, Noiri E. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int, 2002,61(3):855–861

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto T, Kuriwaka-Kido R, Kondo T, et al. Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling. Endocr J, 2012, 59(2):91–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Xu  (徐 钢) or Ying Yao  (姚 颖).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (Nos. 81170686, 81100498, 81100264, 81100485 and 81370798), and the Ministry of Education of China (No. 311028).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Jh., Wang, L. et al. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 516–520 (2014). https://doi.org/10.1007/s11596-014-1308-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1308-y

Key words

Navigation