Skip to main content
Log in

Assemblages and paleo-diet variability of subfossil Chironomidae (Diptera) from a deep lake (Lake Grand Maclu, France)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The heterogeneity of the subfossil chironomid deposition (in terms of assemblages and paleo-diet) has to be studied to assess the reliability of paleolimnological interpretations (i.e., spatial representativeness). We collected 31 cores in the deepest part of Lake Grand Maclu (Jura, France) with the aim of assessing the spatial structures at two spatial scales: a sediment core surface (31.7 cm2) and 4 m2 in the deepest zone of the lake. The results showed that chironomid assemblages exhibited a uniform distribution at the two spatial scales studied. Moreover, a sediment core surface was very reliable for assessing the biodiversity (Simpson’s index) of the deepest part with more than 95% of the overall diversity sampled on average. However, δ 13C values of Chironomus anthracinus-type remains revealed a spatial pattern in the contribution of carbon sources to its biomass. We suggest that a heterogeneous distribution of microbial biomass (such as methane-oxidizing bacteria) could induce a spatial pattern (patch) in food availability for chironomid larvae. We recommend increasing the number of head capsules analyzed in spectrometry to reduce this potential bias due to patterns and to improve upscaling results from individual downcore records to the entire deepwater basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London.

    Google Scholar 

  • Belle, S., C. Parent, V. Frossard, V. Verneaux, L. Millet, P.-M. Chronopoulou, P. Sabatier & M. Magny, 2014. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. Journal of Paleolimnology 52: 215–228.

    Article  Google Scholar 

  • Bennion, H., R. W. Battarbee, C. D. Sayer, G. L. Simpson & T. A. Davidson, 2010. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. Journal of Paleolimnology 45: 533–544.

    Article  Google Scholar 

  • Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.

    Article  Google Scholar 

  • Brooks, S. J., P. G., Langdon, & O., Heiri, 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10 Quaternary Research Association, London: 276 pp.

  • Cao, Y., E. Zhang, X. Chen, N. John Anderson & J. Shen, 2012. Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China). Hydrobiologia 691: 59–70.

    Article  CAS  Google Scholar 

  • Charney N. & S. Record, 2012. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. http://CRAN.R-project.org/package=vegetarian.

  • de Bello, F., S. Lavergne, C. N. Meynard, J. Lepš & W. Thuiller, 2010. The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 21: 992–1000.

    Article  Google Scholar 

  • Doi, H., E. Kikuchi, S. Takagi & S. Shikano, 2006. Selective assimilation by deposit feeders: experimental evidence using stable isotope ratios. Basic and Applied Ecology 7: 159–166.

    Article  Google Scholar 

  • Eggermont, H., P. Deyne & D. Verschuren, 2007. Spatial variability of chironomid death assemblages in the surface sediments of a fluctuating tropical lake (Lake Naivasha, Kenya). Journal of Paleolimnology 38: 309–328.

    Article  Google Scholar 

  • Fortin, M. J., P. Drapeau & P. Legendre, 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209–222.

    Article  Google Scholar 

  • Franklin, R. B. & A. L. Mills, 2003. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiology Ecology 44: 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Frossard, V., S. Belle, V. Verneaux, L. Millet & M. Magny, 2013a. A study of the δ 13C offset between chironomid larvae and their exuvial head capsules: implications for palaeoecology. Journal of Paleolimnology 50: 379–386.

    Article  Google Scholar 

  • Frossard, V., V. Verneaux, L. Millet, J. P. Jenny, F. Arnaud, M. Magny & M. E. Perga, 2013b. Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (δ 13C) of chironomid and cladoceran subfossil remains. Freshwater Biology 59: 789–802.

    Article  Google Scholar 

  • Giraudoux P., 2012. pgirmess: Data analysis in ecology. R package version 1.5.6. http://CRAN.R-project.org/package=pgirmess.

  • Grey, J., A. Kelly & R. I. Jones, 2004. High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnology and Oceanography 49: 239–244.

    Article  CAS  Google Scholar 

  • Harris, D., W. R. Horwath & C. van Kessel, 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal 65: 1853–1856.

    Article  CAS  Google Scholar 

  • Heggen, M. P., H. H. Birks, O. Heiri, J.-A. Grytnes & H. J. B. Birks, 2012. Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains? Journal of Paleolimnology 48: 669–691.

    Article  Google Scholar 

  • Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32: 67–84.

    Article  Google Scholar 

  • Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26: 343–350.

    Article  Google Scholar 

  • Heiri, O., S. J. Brooks, H. J. B. Birks & A. F. Lotter, 2011. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews 30: 3445–3456.

    Article  Google Scholar 

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.

    Google Scholar 

  • Holmes, N., P. G. Langdon & C. J. Caseldine, 2009. Subfossil chironomid variability in surface sediment samples from Icelandic lakes: implications for the development and use of training sets. Journal of Paleolimnology 42: 281–295.

    Article  Google Scholar 

  • Iovino, A. J., 1975. Extant chironomid populations and the representativeness and nature of their remains in lake sediments. PhD thesis, Indiana University: 54 pp.

  • Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89: 857–864.

    Article  PubMed  Google Scholar 

  • Juggins, S., 2012. rioja: Analysis of Quaternary Science Data, R package version 0.7-3. http://cran.r-project.org/package=rioja.

  • Kansanen, P. H., 1986. Information value of chironomid remains in the uppermost sediment layers of a complex lake basin. Hydrobiologia 143: 159–165.

    Article  CAS  Google Scholar 

  • Kohzu, A., C. Kato, T. Iwata, D. Kishi, M. Murakami, S. Nakano & E. Wada, 2004. Stream food web fueled by methane-derived carbon. Aquatic Microbial Ecology 36: 189–194.

    Article  Google Scholar 

  • Kraan, C., J. van der Meer, A. Dekinga & T. Piersma, 2009. Patchiness of macrobenthic invertebrates in homogenized intertidal habitats: hidden spatial structure at a landscape scale. Marine Ecology Progress Series 383: 211–224.

    Article  Google Scholar 

  • Kurek, J. & L. C. Cwynar, 2008. Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiologia 623: 37–52.

    Article  Google Scholar 

  • Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.

    Article  Google Scholar 

  • Legendre, P. & M. J. Fortin, 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Article  Google Scholar 

  • Legendre, P. & M. Troussellier, 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnology & Oceanography 33: 1055–1067.

    Article  Google Scholar 

  • McAuliffe, J. R., 1984. Competition for space, disturbance, and the structure of a benthic stream community. Ecology 65: 894.

    Article  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.

    CAS  PubMed  Google Scholar 

  • Moran, P. A. P., 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J., G. Blanchet, R. Kindt, P. Legendre, R. O’Hara, G. Simpson, P. Solymos, H. Stevens, & H. Wagner, 2012. Vegan: community ecology package. R package version 1.17-11, http://CRAN.R-project.org/package=vegan.

  • Phillips, D. L. & J. W. Gregg, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.

    Article  Google Scholar 

  • R Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  • Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chrironomidae) based on cephalic setation. Journal of Paleolimnology 25: 81–99.

    Article  Google Scholar 

  • Saether, O. A., 1979. Chironomid communities as water quality indicators. Ecography 2: 65–74.

    Article  Google Scholar 

  • Schmäh, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee–Untersee (SW-Germany): implications for paleolimnological interpretation. Journal of Paleolimnology 9: 99–108.

    Article  Google Scholar 

  • Steinbauer, M. J., K. Dolos, B. Reineking & C. Beierkuhnlein, 2012. Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography 21: 1203–1212.

    Article  Google Scholar 

  • Sturges, H. A., 1926. The choice of a class interval. Journal of American Statistic Association 21: 65–66.

    Article  Google Scholar 

  • Summons, R. E., L. L. Jahnke & Z. Roksandic, 1994. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochimica et Cosmochimica Acta 58: 2853–2863.

    Article  CAS  PubMed  Google Scholar 

  • Syväranta, J., H. Hämäläinen & R. I. Jones, 2006. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology 51: 1090–1102.

    Article  Google Scholar 

  • Templeton, A. S., K. H. Chu, L. Alvarez-Cohen & M. E. Conrad, 2006. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochimica et Cosmochimica Acta 70: 1739–1752.

    Article  CAS  Google Scholar 

  • van Hardenbroek, M., O. Heiri, J. Grey, P. L. E. Bodelier, F. Verbruggen & A. F. Lotter, 2009. Fossil chironomid δ 13C as a proxy for past methanogenic contribution to benthic food webs in lakes? Journal of Paleolimnology 43: 235–245.

    Article  Google Scholar 

  • van Hardenbroek, M., O. Heiri, M. F. Wilhelm & A. F. Lotter, 2010. How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, The Netherlands? Aquatic Sciences 73: 247–259.

    Article  Google Scholar 

  • van Hardenbroek, M., A. F. Lotter, D. Bastviken, N. T. Duc & O. Heiri, 2012. Relationship between δ 13C of chironomid remains and methane flux in Swedish lakes. Freshwater Biology 57: 166–177.

    Article  Google Scholar 

  • Verbruggen, F., O. Heiri, G.-J. Reichart, J. W. Leeuw, K. G. J. Nierop & A. F. Lotter, 2009. Effects of chemical pretreatments on δ18O measurements, chemical composition, and morphology of chironomid head capsules. Journal of Paleolimnology 43: 857–872.

    Article  Google Scholar 

  • Verneaux, V., J. Verneaux, A. Schmitt, C. Lovy & J. C. Lambert, 2004. The Lake Biotic Index (LBI): an applied method for assessing the biological quality of lakes using macrobenthos; the Lake Châlain (French Jura) as an example. International Journal of Limnology 40: 1–9.

    Article  Google Scholar 

  • Wachinger, G., S. Fiedler, K. Zepp, A. Gattinger, M. Sommer & K. Roth, 2000. Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations. Soil Biology and Biochemistry 32: 1121–1130.

    Article  CAS  Google Scholar 

  • Whittaker, R. H., 1965. Dominance and Diversity in Land Plant Communities Numerical relations of species express the importance of competition in community function and evolution. Science 147: 250–260.

    Article  CAS  PubMed  Google Scholar 

  • Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161: 291–314.

    Article  CAS  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part1 Larvae. Entomologica Scandinavica Supplement 19: 1–457.

    Google Scholar 

  • Yang, H., R. J. Flower & R. W. Battarbee, 2009. Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Botanica Croatica 68: 367–380.

    Google Scholar 

Download references

Acknowledgments

This study is a part of “Zone Atelier Arc Jurassien.” The Conseil Regional de Franche-Comté provided financial support for this study. We thank Christian Hossann and Claude Bréchet (INRA Nancy, Champenoux) for their assistance in the stable isotope analysis and Maxime Mermet (Chrono-Environnement, Besançon) for technical assistance during the survey. We also extend our gratitude to the three anonymous reviewers for their comments that greatly improved an early version of the manuscript, and Daniel Borcard for constructive discussions about spatial analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Belle.

Additional information

Handling editor: Beat Oertli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belle, S., Millet, L., Gillet, F. et al. Assemblages and paleo-diet variability of subfossil Chironomidae (Diptera) from a deep lake (Lake Grand Maclu, France). Hydrobiologia 755, 145–160 (2015). https://doi.org/10.1007/s10750-015-2222-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2222-4

Keywords

Navigation