Skip to main content

Advertisement

Log in

Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The effects of low counts on assemblage inferences in paleolimnological investigations have been examined for many biological proxies, but not yet for Cladocera. Established guidelines leading to the determination of an adequate, minimum count are absent with respect to sampling cladoceran remains from lake sediments. Using simulated subsamples derived from observed assemblages of considerably higher counts, we investigated the effect of counting effort on three principal characteristics of an assemblage: richness, number of new taxa encountered, and the absolute differences in relative abundances of dominant taxa. Results from six lakes located within diverse ecological regions (i.e. Subarctic, Canadian Shield, Acadian Forest) suggest that a minimum of between 70 and 100 individuals is satisfactory to characterize most assemblages. Doubling counting effort from 100 to 200 individuals leads to only modest gains in subsample relatedness to the observed assemblage. Greater counting effort may be necessary when the primary interest is in presence-absence or distributional data, or when abundances of ecologically relevant taxa are exceptionally low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570

    Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen analytical data. Holocene 2:1–10

    Google Scholar 

  • Bodén P (1991) Reproducibility in the random settling method for quantitative diatom analysis. Micropaleontology 37:313–319

    Article  Google Scholar 

  • Bos DG (2001) Sedimentary cladoceran remains, a key to interpreting past changes in nutrient and trophic interactions. PhD Thesis, Queen’s University, Kingston

  • Brodersen KP, Whiteside MC, Lindegaard C (1998) Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Can J Fish Aquat Sci 55:1093–1103

    Article  Google Scholar 

  • Deevey ES (1964) Preliminary account of fossilization of zooplankton in Rogers Lake. Verh Int Ver Limnol 115:981–992

    Google Scholar 

  • DeSellas AM, Paterson AM, Sweetman JN, Smol JP (2008) Cladocera assemblages from the surface sediments of south-central Ontario lakes and their relationships to measured environmental variables. Hydrobiologia 600:105–119

    Article  Google Scholar 

  • Finney BP, Gregory-Eaves I, Sweetman J, Douglas MSV, Smol JP (2000) Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795–799

    Article  Google Scholar 

  • Frey DG (1960) The ecological significance of cladoceran remains in lake sediments. Ecology 41:684–699

    Article  Google Scholar 

  • Frey DG (1982) The reticulated species of Chydorus (Cladocera, Chydoridae): two new species with suggestion of convergence. Hydrobiologia 93:255–279

    Article  Google Scholar 

  • Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of palaeoecology and palaeohydrology. Wiley, New York, pp 667–692

    Google Scholar 

  • Frey DG (1987) The taxonomy and biogeography of the Cladocera. Hydrobiologia 145:5–17

    Article  Google Scholar 

  • Frey DG (1988) Littoral and offshore communities of diatoms, cladocerans, and dipterous larvae, and their interpretation in paleolimnology. J Paleolimnol 1:179–191

    Google Scholar 

  • Ginn BK, Cumming BF, Smol JP (2007) Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada. Can J Fish Aquat Sci 64:1043–1054

    Article  Google Scholar 

  • Glew J (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235–239

    Article  Google Scholar 

  • Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287

    Article  Google Scholar 

  • Gregory-Eaves I, Smol JP, Finney BP, Lean DRS, Edwards ME (2000) Characteristics and variation in lakes along a north-south transect in Alaska. Arch Hydrobiol 147:193–223

    Google Scholar 

  • Hann BJ (1989) Cladocera. Methods in Quaternary ecology. Geosci Can 16:17–26

    Google Scholar 

  • Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350

    Article  Google Scholar 

  • Hofmann W (1998) Cladocerans and chironomids as indicators of lake-level change in north temperate lakes. J Paleolimnol 19:55–62

    Article  Google Scholar 

  • Hofmann W (2000) Response of chydorid faunas to rapid climatic changes in four alpine lakes at different altitudes. Palaeogeogr Palaeoclimatol Palaeoecol 159:281–292

    Article  Google Scholar 

  • Hudson JJ, Taylor WD, Schindler DW (1999) Planktonic nutrient regeneration and cycling efficiency in temperate lakes. Nature 400:659–661

    Article  Google Scholar 

  • Järvinen M, Salonen K (1998) Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Can J Fish Aquat Sci 55:2562–2571

    Article  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001a) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Skovgaard H, Hvidt CV (2001b) Changes in the abundance of planktivorous fish in Lake Skanderborg during the past two centuries—a palaeoecological approach. Palaeogeogr Palaeoclimatol Palaeoecol 172:143–152

    Article  Google Scholar 

  • Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377

    Article  Google Scholar 

  • Kattel GR, Battarbee RW, Mackay A, Birks HJB (2007) Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? J Paleolimnol 38:157–181

    Article  Google Scholar 

  • Kerfoot WC (1981) Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62:216–233

    Article  Google Scholar 

  • Kerfoot WC, Robbins JA, Weider LJ (1999) A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol Oceanogr 44:1232–1247

    Article  Google Scholar 

  • Korhola A, Rautio M (2001) Cladocera and other brachiopod crustaceans. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: zoological indicators. Kluwer, Dordrecht, pp 5–41

    Google Scholar 

  • Korhola A, Tikkanen M, Weckström J (2005) Quantification of Holocene lake-level changes in Finnish Lapland using a cladoceran-lake depth transfer model. J Paleolimnol 34:175–190

    Article  Google Scholar 

  • Korosi JB, Paterson AM, DeSellas AM, Smol JP (2008) Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. J Limnol 67:22–34

    Google Scholar 

  • Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361

    Article  Google Scholar 

  • Lytle DE, Wahl ER (2005) Palaeoenvironmental reconstructions using the modern analogue technique: the effects of sample size and decision rules. Holocene 15:554–566

    Article  Google Scholar 

  • Nykänen M, Vakkilainen K, Liukkonen M, Kairesalo T (2009) Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records. J Paleolimnol 42:551–570

    Article  Google Scholar 

  • Paterson MJ (1994) Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). J Paleolimnol 11:189–200

    Article  Google Scholar 

  • Payne RJ, Mitchell EAD (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495

    Article  Google Scholar 

  • Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342

    Article  Google Scholar 

  • Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities, their seasonal variability and representativeness in the sediment of subarctic Lake Saanajärvi. J Limnol 59:81–96

    Google Scholar 

  • Sarmaja-Korhonen K, Kultti S, Solovieva N, Valiranta M (2003) Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. J Paleolimnol 30:415–426

    Article  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  • Smirnov NN (1974) Fauna of the U.S.S.R., Crustacea. Vol 1: Chydoridae. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Smirnov NN (1996) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the World. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Sweetman JN, Finney BP (2003) Differential responses of zooplankton populations (Bosmina longirostris) to fish predation and nutrient loading in an introduced and natural sockeye salmon nursery lake on Kodiak Island, Alaska, USA. J Paleolimnol 30:183–193

    Article  Google Scholar 

  • Sweetman JN, Smol JP (2006a) Patterns in the distribution of cladocerans (Crustacea: Branchiopoda) in lakes across a north-south transect in Alaska, USA. Hydrobiologia 553:277–291

    Article  Google Scholar 

  • Sweetman JN, Smol JP (2006b) A guide to the identification of cladoceran remains (Crustacea, Branchiopoda) in Alaskan lake sediments. Arch Hydrobiol Suppl 151:353–394

    Google Scholar 

  • Sweetman JN, LaFace E, Rühland KM, Smol JP (2008) Evaluating the response of Cladocera to recent environmental change in lakes from the Canadian Arctic treeline region. Arct Antarct Alp Res 40:584–591

    Article  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie

    Google Scholar 

  • Taylor DJ, Ishikane CR, Haney RA (2002) The systematics of Holarctic Bosminids and a revision that reconciles molecular and morphological evolution. Limnol Oceanogr 47:1486–1495

    Article  Google Scholar 

  • ter Braak CFJ, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270:485–502

    Article  Google Scholar 

  • Toms JD, Lesperance ML (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–2041

    Article  Google Scholar 

  • Urabe J, Elser JJ, Kyle M, Yoshida T, Sekino T, Kawabata Z (2002) Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling. Ecol Lett 5:177–185

    Article  Google Scholar 

  • Wall AAJ, Gilbert D, Magny M, Mitchell EAD (2010) Testate amoeba analysis of lake sediments: impact of filter size and total count on estimates of density, species richness and assemblage structure. J Paleolimnol 43:689–704

    Article  Google Scholar 

  • Witty LM (2004) Practical guide to identifying freshwater crustacean zooplankton. Cooperative Freshwater Ecology Unit. Laurentian University, Sudbury

    Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) grant to JPS and a NSERC Postdoctoral Fellowship to JK. We also thank Brendan Wiltse and Heather Haig for assistance implementing the R code. Two anonymous reviewers and Oliver Heiri (Associate Editor) also provided useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Kurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurek, J., Korosi, J.B., Jeziorski, A. et al. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44, 603–612 (2010). https://doi.org/10.1007/s10933-010-9440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-010-9440-6

Keywords

Navigation