Skip to main content
Log in

Diversity and evolution of major Panax species revealed by scanning the entire chloroplast intergenic spacer sequences

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Ginseng is an important medicinal plant, but almost no genomic information is known for it. For the primary step to understand the Panax genome, we inspected the chloroplast genome sequence diversity and used that to infer the evolution of Panax species using them. We inspected a total of 101 intergenic spacers (IGS) covering 44,563 bp (96.8 % of the total IGS) from four Panax species. Diversity was inspected by three steps: gel electrophoresis, high resolution melting (HRM) analysis, and further confirmation by sequencing. Even though low levels of InDel polymorphism were detected by gel electrophoresis, high levels of reproducible polymorphisms were identified by HRM analysis. Sequencing of the HRM-polymorphic spaces and pair-wise multiple sequence alignments revealed up to 247 sequence variations between species. We have identified 62 IGS showing polymorphism between species. Among them, the trnE-trnT, trnT-psbD, ndhF-rpl32, and rpl14-rpl16 spaces are more informative for studying the diversity of Panax relatives. Phylogenetic analysis and molecular evolution studies revealed that P. notoginseng is most diverged from the other Panax species, with a nucleotide substitution rate of 0.0039. P. quinquefolius shows a close relationship with P. ginseng and P. japonicus, with a nucleotide substitution rate of 0.0009. Meanwhile, no sequence variation was detected between P. ginseng and P. japonicus. Calculation of molecular clocks revealed that P. notoginseng diverged more than 1.30 million years ago from the other Panax species and then, P. quinquefolius diverged from P. ginseng by migration in the American continent more than 0.29 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson W (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Arthofer W, Steiner FM, Schlick-Steiner BC (2011) Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Mol Genet Genomics 286:225–235

    Article  PubMed  CAS  Google Scholar 

  • Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol and Evol 9:457–473

    CAS  Google Scholar 

  • Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol 11:80

    Article  PubMed  CAS  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D (2011) High Resolution Melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Rowen L, Williams J, Cameron RA (2003) Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci 100:4661–4665

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  Google Scholar 

  • Cho KS, Yang TJ, Hong SY, Kwon YS, Woo JG, Park HG (2006) Determination of cytoplasmic male sterile factors in onion plants (Allium cepa L.) using PCR-RFLP and SNP markers. Mol Cells 21:411–417

    PubMed  CAS  Google Scholar 

  • Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ (2011) Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 35:399–412

    Article  CAS  Google Scholar 

  • Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete cp genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518

    Article  PubMed  CAS  Google Scholar 

  • Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete cp genome of 17 individuals of pest species Jacobaea vulgaris: SKIPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105

    Article  PubMed  CAS  Google Scholar 

  • Fritsch PW, Cruz BC, Almeda F, Wang YG, Shi SH (2006) Phylogeny of Symplocos based on DNA sequences of the cp trnC-trnD intergenic region. Syst Bot 31:181–192

    Article  Google Scholar 

  • Gao L, Zhou Y, Wang Z-W, Su Y-J, Wang T (2011) Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biol 11:64

    Article  PubMed  CAS  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600

    Google Scholar 

  • Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six cp intergenic regions in new world species of the Lecythidaceae. Mol Biol Evol 20:1710–1721

    Article  PubMed  CAS  Google Scholar 

  • Hao DC, Huang B, Yang L (2008) Phylogenetic relationships of the genus Taxus inferred from cp intergenic spacer and nuclear coding DNA. Biol Pharm Bull 31:260–265

    Article  CAS  Google Scholar 

  • Harris SA, Ingram R (1991) Cp DNA and Biosystematics - the Effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Article  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) Cp genome—intermolecular recombination between distinct transfer-RNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Genet Genomics 217:185–194

    Article  CAS  Google Scholar 

  • Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK, Ribstein S, Taylor DR (2003) Molecular evolution of insertions and deletion in the cp genome of Silene. Mol Biol Evol 20:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete cp genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC (2011) Defense genes induced by pathogens and abiotic stresses in Panax ginseng C. A. Meyer. J Ginseng Res 35:1–11

    Article  CAS  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize cp genome—gene content, hotspots of divergence and fine-tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  • Marshall HD, Newton C, Ritland K (2001) Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine cp DNA. Mol Biol Evol 18:2136–2138

    Article  PubMed  CAS  Google Scholar 

  • Mccauley DE (1995) The use of Cp DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Wittwer CT, Palais R, Zhou LM (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of cp DNA. Mol Genet Genomics 266:740–746

    Article  PubMed  CAS  Google Scholar 

  • Plunkett GM, Wen J, Lowry PP (2004) Infrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol 245:1–39

    Article  CAS  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Rheindt FE, Austin JJ (2005) Major analytical and conceptual shortcomings in a recent taxonomic revision of the Procellariiformes—a reply to Penhallurick and Wink (2004). Emu 105:181–186

    Article  Google Scholar 

  • Rothwell GW, Van Atta MR, Ballard HE, Stockey RA (2004) Molecular phylogenetic relationships among Lemnaceae and Araceae using the cp trnL-trnF intergenic spacer. Mol Phylogenet Evol 30:378–385

    Article  PubMed  CAS  Google Scholar 

  • Sakai M, Kanazawa A, Fujii A, Thseng FS, Abe J, Shimamoto Y (2003) Phylogenetic relationships of the cp genomes in the genus Glycine inferred from four intergenic spacer sequences. Plant Syst Evol 239:29–54

    Article  CAS  Google Scholar 

  • Sathiyamoorthy S, In JG, Lee BS, Kwon WS, Yang DU, Kim JH, Yang DC (2011) Insilico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C. A. Meyer. J Ginseng Res 35:21–30

    Article  CAS  Google Scholar 

  • Sharma SK, Pandit MK (2009) A New Species of Panax L. (Araliaceae) from Sikkim Himalaya, India. Syst Bot 34:434–438

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole cp genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchishinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide-sequence of the tobacco cp genome - its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Sun C, Li Y, Wu Q, Luo HM, Sun YZ, Song JY, Lui EMK, Chen SL (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Van Dan N, Ramchiary N, Choi S, Uhm T, Yang TJ, Ahn IO, Lim Y (2010) Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv Genet 11:1223–1225

    Article  Google Scholar 

  • Wen J (2001) Evolution of the Aralia-Panax complex (Araliaceae) as inferred from nuclear ribosomal ITS sequences. Edinburgh J Bot 58:243–257

    Article  Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:144–167

    Google Scholar 

  • Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: Implications for plant molecular systematics. Syst Bot 29:1011–1020

    Article  Google Scholar 

  • Yamane K, Yano K, Kawahara T (2006) Pattern and rate of indel evolution inferred from whole cp intergenic regions in sugarcane, maize and rice. DNA Res 13:197–204

    Article  PubMed  CAS  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006a) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim AJ, Jin M, Park JY, Lim MH, Jin YM, Kim HI, Hahn JH, Lim YP, Park BS (2006b) An advanced strategy for Brassica genome sequencing using comparative genomics with Arabidopsis. Acta Hort 706:73–76

  • Zhang XF, Marchant A, Wilson KL, Bruhl JJ (2004) Phylogenetic relationships of Carpha and its relatives (Schoeneae, Cyperaceae) inferred from cp trnL intron and trnL-trnF intergenic spacer sequences. Mol Phylogenet Evol 31:647–657

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-J, Ma P-F, Li D-Z (2011) High-throughput sequencing of six bamboo Cp genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 6:e20596

  • Zhu S, Fushimi H, Cai SQ, Komatsu K (2003) Phylogenetic relationship in the genus Panax: inferred from cp trnK gene and nuclear 18S rRNA gene sequences. Planta Med 69:647–653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008202) and the Mid-career Researcher Program through a National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2007-0056122) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang.

Additional information

Jun Ha Kim and Ju-Yeon Jung authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Jung, JY., Choi, HI. et al. Diversity and evolution of major Panax species revealed by scanning the entire chloroplast intergenic spacer sequences. Genet Resour Crop Evol 60, 413–425 (2013). https://doi.org/10.1007/s10722-012-9844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9844-4

Keywords

Navigation