Skip to main content
Log in

Structure scalars in dissipative axial system in f(R) gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper investigates the effects of \(f{(}R{)}=R+\alpha R^2\) model on the dissipative anisotropic non-static rotating axial stellar system using structure scalars. By orthogonal splitting of the Riemann tensor, we obtain structure scalars and explore their roles for dissipative relativistic fluid configuration. We investigate the contribution of structure scalars in the evolution of various kinematical variables (e.g. expansion, shear and vorticity). Finally, we discuss thermodynamical aspects and the effect of dissipation on inertial mass density through transport equation. It is interesting to mention here that all our results reduce to the previous known results in the limiting case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joshi, P.S., Goswami, R.: Class Quantum Gravity 24, 2917 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. Di Prisco, A., Herrera, L., Le Denmat, G., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 76, 064017 (2007)

    Article  ADS  Google Scholar 

  3. Debbasch, F., Herrera, L., Pereira, P.R.C.T., Santos, N.O.: Gen. Relativ. Gravit. 38, 1825 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. Herrera, L., Di Prisco, A., Ospino, J.: Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  5. Sharif, M., Bhatti, M.Z.: Mod. Phys. Lett. A 27, 1250141 (2014)

    Article  ADS  Google Scholar 

  6. Brax, Ph, Rosenfeld, R., Steer, D.A.: J. Cosmol. Astropart. Phys. 08, 033 (2010)

    Article  ADS  Google Scholar 

  7. Capozziello, S., De Laurentis, M., Odintsov, S.D., Stabile, A.: Phys. Rev. D 83, 064004 (2011)

    Article  ADS  Google Scholar 

  8. Borisov, A., Jain, B., Zhang, P.: Phys. Rev. D 85, 063518 (2012)

    Article  ADS  Google Scholar 

  9. Herrera, L., Di Prisco, A., Fuenmayor, E., Troconis, O.: Int. J. Mod. Phys. D 18, 129 (2009)

    Article  ADS  Google Scholar 

  10. Capozziello, S., De Laurentis, M., De Martino, I., Formisano, M., Odintsov, S.D.: Phys. Rev. D 85, 044022 (2012)

    Article  ADS  Google Scholar 

  11. Páramos, J., Bastos, C.: Phys. Rev. D 86, 103007 (2012)

    Article  ADS  Google Scholar 

  12. Goswami, R., Nzioki, A.M., Maharaj, S.D., Ghosh, S.G.: Phys. Rev. D 90, 084011 (2014)

    Article  ADS  Google Scholar 

  13. Sharif, M., Yousaf, Z.: Mon. Not. R. Astron. Soc. 432, 264 (2013)

    Article  ADS  Google Scholar 

  14. Astashenok, A.V., Capozziello, S., Odintsov, S.D.: J. Cosmol. Astropart. Phys. 12, 40 (2013)

    Article  ADS  Google Scholar 

  15. Chiba, T.: Prog. Theor. Phys. 95, 2 (1996)

    Article  MathSciNet  Google Scholar 

  16. Lemos, J.P.S.: Phys. Rev. D 57, 4600 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Herrera, L., Varela, V.: Phys. Lett. A 226, 143 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  18. Herrera, L., Di Prisco, A., Ibáñez, J., Ospino, J.: Phys. Rev. D 87, 024014 (2013)

    Article  ADS  Google Scholar 

  19. Sharif, M., Bhatti, M.Z.: J. Cosmol. Astropart. Phys. 10, 056 (2013)

    Article  ADS  Google Scholar 

  20. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. 352, 943 (2014)

    Article  ADS  Google Scholar 

  21. Sharif, M., Nasir, Z.: Astrophys. Space Sci. 357, 89 (2015)

    Article  ADS  Google Scholar 

  22. Sharif, M., Nasir, Z.: Commun. Theor. Phys. (2015, accepted)

  23. Herrera, L., Ospino, J., Di Prisco, A., Fuenmayor, E., Troconis, O.: Phys. Rev. D 79, 064025 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Herrera, L., Di Prisco, A., Ospino, J.: Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  25. Sharif, M., Bhatti, M.Z.: Gen. Relativ. Gravit. 44, 2811 (2012)

    Article  ADS  Google Scholar 

  26. Sharif, M., Yousaf, M.: Astrophys. Space Sci. 352, 321 (2014)

    Article  ADS  Google Scholar 

  27. Herrera, L., Di Prisco, A., Ibáñez, J., Ospino, J.: Phys. Rev. D 89, 084034 (2014)

    Article  ADS  Google Scholar 

  28. Buchdahl, A.H.: Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  29. Bertschinger, E., Hamilton, A.J.S.: Astrophys. J. 435, 1 (1994)

    Article  ADS  Google Scholar 

  30. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  31. De Felice, A., Tsujikawa, S.: Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  32. Sotirou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  33. Nikolić, H.: Phys. Lett. B 733, 6 (2014)

    Article  ADS  Google Scholar 

  34. Capozziello, S., Laurentis, M.D., Faraoni, V.: Open Astron. J. 3, 49 (2010)

    ADS  Google Scholar 

  35. Cembranos, J.A.R.: Phys. Rev. Lett. 102, 141301 (2009)

    Article  ADS  Google Scholar 

  36. Cembranos, J.A.R.: J. Phys. Conf. Ser. 315, 012004 (2011)

    Article  ADS  Google Scholar 

  37. Lobo, A.G.P.G.: Class Quantum Gravity 25, 015006 (2008)

    Article  ADS  Google Scholar 

  38. Herrera, L., Barreto, W., Carot, J., Di Prisco, A.: Class Quantum Gravity 24, 2645 (2007)

    Article  ADS  Google Scholar 

  39. Bonilla, M.Á.G., Senovilla, J.M.M.: Gen. Relativ. Gravit. 29, 1 (1997)

    Article  MathSciNet  Google Scholar 

  40. Israel, W.: Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  41. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  42. Müller, I.: Zum Paradoxon der Wärmeleitungstheorie. Z. Phys. 198, 329 (1967)

    Article  ADS  Google Scholar 

  43. Tolman, R.C.: Phys. Rev. 35, 904 (1930)

    Article  ADS  Google Scholar 

  44. Herrera, L.: Phys. Lett. A 300, 157–161 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix

Appendix

The propagation equation for vorticity tensor (Eq. (26)) is

$$\begin{aligned} \frac{2}{3} \Theta \Omega _{\gamma \nu }+h^\alpha _\gamma h^\beta _\nu \Omega _{\alpha \beta ;\delta } V^\delta +2\sigma _{\alpha [\gamma }\Omega ^\alpha _{\nu ]}-h^\alpha _{[\gamma }h^\beta _{\nu ]}a_{\alpha ;\beta }=0. \end{aligned}$$
(66)

The propagation equation for shear is

$$\begin{aligned}&E_{\gamma \nu }-\frac{4\pi \Pi _{\gamma \nu }}{(1+2\alpha R)}+\frac{h_{\gamma \nu }}{6(1+2\alpha R)}\left( V^\pi V^\rho \nabla _\pi \nabla _\rho (1+2\alpha R)+\Box (1+2\alpha R)\right) \nonumber \\&\quad -\frac{h^\pi _\gamma h^\lambda _\nu }{2(1+2\alpha R)}\nabla _\pi \nabla _\lambda (1+2\alpha R)=h^\alpha _{(\gamma } h^\beta _{\nu )}a_{\beta ;\alpha }+a_\gamma a_\nu +\frac{h_{\gamma \nu }}{3}\left( \Omega ^2+2\sigma ^2-a^\beta _{;\beta }\right) \nonumber \\&\quad -\sigma ^\alpha _\gamma \sigma _{\nu \alpha }-\omega _\gamma \omega _\nu -h^\alpha _\gamma h^\beta _\nu \sigma _{\alpha \beta ;\delta } V^\delta -\frac{2}{3} \Theta \sigma _{\gamma \nu }. \end{aligned}$$
(67)

Here \(\omega _\gamma \) is the vorticity vector given as

$$\begin{aligned} \omega _\gamma =\frac{1}{2}\eta _{\gamma \nu \lambda \delta }\Omega ^{\nu \lambda } V^\delta , \end{aligned}$$

or \(\omega _\gamma =-\Omega S_\gamma \). Contracting Eq. (67) with KK, LL and KL, we obtain

$$\begin{aligned} Y_I&=\left( \Omega ^2+2\sigma ^2-a^\lambda _{;\lambda }\right) -\frac{\sigma _I^2}{3}-\sigma _{I;\lambda } V^\lambda -\frac{2 \Theta \sigma _I}{3}+3\left( a_I^2+a_{\lambda ;\nu } K^\lambda K^\nu \right) \nonumber \\&\quad +\frac{1}{1+2{\alpha }R}\left[ \frac{3\alpha }{B^2}\nabla _r \nabla _r R-\alpha \Box R-\frac{\alpha }{A^2}\nabla _t \nabla _t R\right] , \end{aligned}$$
(68)
$$\begin{aligned} Y_{II}&=\left( \Omega ^2+2\sigma ^2-a^\lambda _{;\lambda }\right) -\frac{\sigma _{II}^2}{3}-\sigma _{II;\lambda } V^\lambda -\frac{2 \Theta \sigma _{II}}{3}+3\left( a_{II}^2+a_{\lambda ;\nu } L^\lambda L^\nu \right) \nonumber \\&\quad +\frac{1}{1+2{\alpha }R}\left[ \frac{3\alpha }{r^2B^2 }\nabla _\theta \nabla _\theta R-\alpha \Box R-\frac{\alpha }{A^2}\nabla _t \nabla _t R\right] , \end{aligned}$$
(69)
$$\begin{aligned} Y_{KL}&=K^{(\lambda }L^{\nu )}a_{\nu ;\lambda }+\frac{\Omega \left( \sigma _{II}-\sigma _I\right) }{3}+a_I a_{II}+\frac{\alpha }{B^2 r (1+2\alpha R)}\nabla _r \nabla _\theta R. \end{aligned}$$
(70)

The time propagation equation for expansion scalar is given by

$$\begin{aligned} Y_T=-\Theta _{;\gamma } V^\gamma + a^\gamma _{;\gamma }-\frac{\Theta ^2}{3} +2(\Omega ^2-\sigma ^2)+\frac{2\alpha }{(1+2\alpha R)}\left( \Box R- 2 V^\lambda V^\delta \nabla _\lambda \nabla _\delta R\right) . \end{aligned}$$
(71)

The expressions for the scalars corresponding to electric and magnetic part of the Weyl tensor are

$$\begin{aligned} \varepsilon _I\!&=\!\frac{3}{A^2B^2}C_{1010},\quad \varepsilon _{II}\!=\!\frac{3}{A^2B^2r^2+G^2}C_{2020},\quad \varepsilon _{KL}\!=\!\frac{1}{AB\sqrt{A^2B^2r^2+G^2}}C_{1020},\\ H_1&=\frac{1}{2ABC^3(A^2B^2r^2+G^2)}\left( C_{0323}(G-A^2) -C_{0303}(G+B^2r^2)\right) ,\\ H_2&=\frac{1}{2C^3\sqrt{A^2B^2r^2+G^2}}\left( \frac{G}{A^2B^2r^2+G^2}C_{0323}\right. \\&\quad \left. -\frac{B^2r^2}{A^2B^2r^2+G^2}C_{0303}-\frac{1}{B^2}C_{0313}\right) , \end{aligned}$$

where the non-zero components of the Weyl tensor (like \(C_{0303}\)) can be obtained in a straight forward way.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Nasir, Z. Structure scalars in dissipative axial system in f(R) gravity. Gen Relativ Gravit 47, 85 (2015). https://doi.org/10.1007/s10714-015-1925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1925-1

Keywords

Navigation