Skip to main content
Log in

Isotropic and anisotropic neutron star structure in 4D Einstein–Gauss–Bonnet Gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

With regard to the coupling constant and the strong magnetic field of neutron stars, we have studied these stars in the 4D Einstein–Gauss–Bonnet (4D EGB) gravity model in order to grasp a better understanding of these objects. In this paper, we have shown that the neutron star properties are considerably affected by the coupling constant and magnetic field. We have found that as a consequence of the strong magnetic field and the coupling constant, the maximum mass and radius of a neutron star are increasing functions of the coupling constant, while Schwarzschild radius, compactness, surface gravitational redshift, and Kretschmann scalar are decreasing functions. Additionally, our study has shown that the physical properties of a magnetized neutron star are greatly influenced not only by the strong magnetic field, but also by the anisotropy. Moreover, we have shown that to obtain the hydrostatic equilibrium configuration of the magnetized material, both the local anisotropy effect and the anisotropy due to the magnetic field should be considered. Finally, we have found that in the anisotropic magnetized neutron stars, the maximum mass and radius do not always increase with increasing the internal magnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data were associated in the manuscript.

References

  1. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005)

    Article  ADS  CAS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. R. Abbott et al., Astrophys. J. Lett. 896, L44 (2020)

    Article  ADS  CAS  Google Scholar 

  5. Y.F. Yuan, J.L. Zhang, Astron. Astrophys. 335, 969 (1998)

    ADS  CAS  Google Scholar 

  6. T. Tatsumi, Phys. Lett. B 489, 280 (2000)

    Article  ADS  CAS  Google Scholar 

  7. E.J. Ferrer, V. de La Incera, J.P. Keith, Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  8. R.C. Duncan, C. Thompson, Astrophys. J. Lett. 392, L9 (1992)

    Article  ADS  CAS  Google Scholar 

  9. S.B. Cenko et al., Astrophys. J. 711, 641 (2010)

    Article  ADS  Google Scholar 

  10. C. Lanczos, Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  11. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  12. D. Lovelock, J. Math. Phys. 13, 874 (1972)

    Article  ADS  Google Scholar 

  13. H. Maeda, M. Nozawa, Phys. Rev. D 78, 024005 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Jusufi, A. Banerjee, S.G. Ghosh, Eur. Phys. J. C 80, 698 (2020)

    Article  ADS  CAS  Google Scholar 

  15. B. Eslam Panah, K. Jafarzade, S.H. Hendi, Nucl. Phys. B 961, 115269 (2020)

    Article  CAS  Google Scholar 

  16. D. Glavan, C. Lin, Phys. Rev. Lett. 124, 081301 (2020)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  17. S. Capozziello, M. De Laurentis, R. Farinelli, S.D. Odintsov, Phys. Rev. D 93, 023501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Yousaf, M.Z. Bhatti, Z. Yousaf, Nucl. Phys. B 995, 116328 (2023)

    Article  CAS  Google Scholar 

  19. M.Z. Bhatti, M. Yousaf, Z. Yousaf, Gen. Relativ. Gravit. 55, 16 (2023)

    Article  ADS  Google Scholar 

  20. M.Z. Bhatti, M. Yousaf, Z. Yousaf, New Astron. 106, 102132 (2024)

    Article  Google Scholar 

  21. D. Deb, B. Mukhopadhyay, F. Weber, Astrophys. J. 922, 149 (2021)

    Article  ADS  CAS  Google Scholar 

  22. D.D. Doneva, S.S. Yazadjiev, J. Cosmol. Astropart. Phys. 05, 024 (2021)

    Article  ADS  Google Scholar 

  23. T. Tangphati, A. Pradhan, A. Banerjee, G. Panotopoulos, Phys. Dark Universe 33, 100877 (2021)

    Article  Google Scholar 

  24. T. Tangphati, A. Pradhan, A. Errehymy, A. Banerjee, Phys. Lett. B 819, 136423 (2021)

    Article  CAS  Google Scholar 

  25. G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)

    Article  ADS  CAS  Google Scholar 

  26. G.H. Bordbar, M. Hayati, Int. J. Mod. Phys. A 21, 1555 (2006)

    Article  ADS  CAS  Google Scholar 

  27. T. Yazdizadeh, G.H. Bordbar, Res. Astron. Asrtophys. 11, 471 (2011)

    Article  ADS  CAS  Google Scholar 

  28. B. Eslam Panah, T. Yazdizadeh, G.H. Bordbar, Eur. Phys. J. C 79, 815 (2019)

    Article  ADS  Google Scholar 

  29. S.H. Hendi, G.H. Bordbar, B. Eslam-Panah, M. Najafi, Astrophys. Space Sci. 358, 30 (2015)

    Article  ADS  Google Scholar 

  30. G.H. Bordbar, S.H. Hendi, B. Eslam-Panah, Eur. Phys. J. Plus 131, 315 (2016)

    Article  Google Scholar 

  31. S.H. Hendi, G.H. Bordbar, B. Eslam-Panah, S. Panahiyan, J. Cosmol. Astropart. Phys. 09, 013 (2016)

    Article  ADS  Google Scholar 

  32. S.H. Hendi, G.H. Bordbar, B. Eslam Panah, S. Panahiyan, J. Cosmol. Astropart. Phys. 07, 004 (2017)

    Article  ADS  Google Scholar 

  33. G.H. Bordbar, Z. Rezaei, A. Montakhab, Phys. Rev. C 83, 044310 (2011)

    Article  ADS  Google Scholar 

  34. B. Eslam Panah, G.H. Bordbar, S.H. Hendi, R. Ruffini, Z. Rezaei, R. Moradi, Astrophys. J. 848, 24 (2017)

    Article  ADS  Google Scholar 

  35. G.H. Bordbar, Z. Rezaei, Res. Astron. Asrtophys. 13, 197 (2013)

    Article  ADS  Google Scholar 

  36. G.H. Bordbar, Z. Rezaei, Phys. Lett. B 718, 1125 (2012)

    Article  ADS  Google Scholar 

  37. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  38. R. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  39. D. Horvat, S. Ilijic, A. Marunovic, Class. Quant. Grav. 28, 025009 (2011)

    Article  ADS  Google Scholar 

  40. G.H. Bordbar, M. Karami, Eur. Phys. J. C 82, 74 (2022)

    Article  ADS  CAS  Google Scholar 

  41. J. Sedaghat, S.M. Zebarjad, G.H. Bordbar, B. Eslam-Panah, Phys. Lett. B 829, 137032 (2022)

    Article  CAS  Google Scholar 

  42. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)

    Article  ADS  CAS  Google Scholar 

  43. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. D 58, 121301 (1998)

    Article  ADS  Google Scholar 

  44. R.H. Casali, L.B. Castro, D.P. Menezes, Phys. Rev. C 89, 015805 (2014)

    Article  ADS  Google Scholar 

  45. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  46. F. Kayanikhoo, K. Naficy, G.H. Bordbar, Eur. Phys. J. A 56, 2 (2020)

    Article  ADS  CAS  Google Scholar 

  47. R. Mallick, S. Schramm, Phys. Rev. C 89, 045805 (2014)

    Article  ADS  Google Scholar 

  48. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860, 149 (2018)

    Article  ADS  Google Scholar 

  49. A.V. Astashenok, S. Capozziello, S.D. Odintsov, J. Cosmol. Astropart. Phys. 12, 040 (2013)

    Article  ADS  Google Scholar 

  50. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  CAS  Google Scholar 

  51. K.Y. Eksi, C. Gungor, M.M. Turkoglu, Phys. Rev. D 89, 063003 (2014)

    Article  ADS  Google Scholar 

  52. T. Guver, F. Ozel, A. Cebrera-Lavers, P. Wroblewski, Astrophys. J. 712, 964 (2010)

    Article  ADS  CAS  Google Scholar 

  53. M.L. Rawls et al., Astrophys. J. 730, 25 (2011)

    Article  ADS  Google Scholar 

  54. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  56. H.T. Cromartie et al., Nature Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  57. M. Linares, T. Shahbaz, J. Casares, Astrophys. J. 859, 54 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank Shiraz University Research Council. We also wish to thank S. H. Hendi (Shiraz University) and B. Eslam Panah (University of Mazandaran) for their useful comments and discussions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Bordbar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, G.H., Mazhari, M. & Poostforush, A. Isotropic and anisotropic neutron star structure in 4D Einstein–Gauss–Bonnet Gravity. Eur. Phys. J. Plus 139, 167 (2024). https://doi.org/10.1140/epjp/s13360-024-04959-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04959-w

Navigation