Skip to main content

Advertisement

Log in

A Wavelet-Based Assessment of Topographic-Isostatic Reductions for GOCE Gravity Gradients

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Gravity gradient measurements from ESA’s satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE) contain significant high- and mid-frequency signal components, which are primarily caused by the attraction of the Earth’s topographic and isostatic masses. In order to mitigate the resulting numerical instability of a harmonic downward continuation, the observed gradients can be smoothed with respect to topographic-isostatic effects using a remove–compute–restore technique. For this reason, topographic-isostatic reductions are calculated by forward modeling that employs the advanced Rock–Water–Ice methodology. The basis of this approach is a three-layer decomposition of the topography with variable density values and a modified Airy–Heiskanen isostatic concept incorporating a depth model of the Mohorovičić discontinuity. Moreover, tesseroid bodies are utilized for mass discretization and arranged on an ellipsoidal reference surface. To evaluate the degree of smoothing via topographic-isostatic reduction of GOCE gravity gradients, a wavelet-based assessment is presented in this paper and compared with statistical inferences in the space domain. Using the Morlet wavelet, continuous wavelet transforms are applied to measured GOCE gravity gradients before and after reducing topographic-isostatic signals. By analyzing a representative data set in the Himalayan region, an employment of the reductions leads to significantly smoothed gradients. In addition, smoothing effects that are invisible in the space domain can be detected in wavelet scalograms, making a wavelet-based spectral analysis a powerful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abd-Elmotaal H, Seitz K, Abd-Elbaky M, Heck B (2014) Comparison among three harmonic analysis techniques on the sphere and the ellipsoid. J Applied Geod, in print. doi:10.1515/jag-2013-0008

  • Álvarez O, Gimenez M, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophys J Int 190(2):941–959. doi:10.1111/j.1365-246X.2012.05556.x

    Article  Google Scholar 

  • Atallah L, Smith PJP, Bates CR (2002) Wavelet analysis of bathymetric sidescan sonar data for the classification of seafloor sediments in Hopvågen Bay - Norway. Mar Geophys Res 23(5–6):431–442. doi:10.1023/B:MARI.0000018239.07561.76

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS, Trans AGU 81, F897

    Google Scholar 

  • Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE gravitational gradients along the orbit. J Geod 85(11):791–805. doi:10.1007/s00190-011-0464-0

    Article  Google Scholar 

  • Collin F, Warnant R (1995) Application of the wavelet transform for GPS cycle slip correction and comparison with Kalman filter. Manuscr Geod 20(3):161–172

    Google Scholar 

  • Debnath L (2001) Wavelet transforms and their applications. Birkhäuser, Boston

    Google Scholar 

  • Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Applied Earth Obs Geoinf, in print. doi:10.1016/j.jag.2013.10.005

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, 133pp, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA

  • Forsberg R, Tscherning C (1997) Topographic effects in gravity field modelling for BVP. In Sansò F, Rummel R (eds), Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in Earth sciences, IAG Symposia, vol. 65, Springer, 239–272. doi:10.1007/BFb0011707

  • Gibert D, Holschneider M, Le Mouël JL (1998) Wavelet analysis of the Chandler wobble. J Geophys Res 103(B11):27069–27089. doi:10.1029/98JB02527

    Article  Google Scholar 

  • Goupillaud P, Grossman A, Morlet J (1984) Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23(1):85–102. doi:10.1016/0016-7142(84)90025-5

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2010) Modelling topographic effects in GOCE gravity gradients. GEOTECHNOLOGIEN Science Report, vol. 17, 84–93. doi:10.2312/GFZ.gt.17.13

    Google Scholar 

  • Grombein T, Seitz K, Heck B (2011) Smoothing GOCE gravity gradients by means of topographic-isostatic reductions. In Ouwehand L (ed), Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696, ESA/ESTEC

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geod 87(7):645–660. doi:10.1007/s00190-013-0636-1

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2014) Topographic-isostatic reduction of GOCE gravity gradients. In Rizos C, Willis P (eds), Earth on the edge: science for a sustainable planet, Proceedings of the IAG General Assembly, Melbourne, Australia, 2011, IAG Symposia, vol. 139, Springer, 349–356. doi:10.1007/978-3-642-37222-3_46

  • Gruber T, Rummel R, Abrikosov O, van Hees R (2010) GOCE level 2 product data handbook. GO-MA-HPF-GS-0110, Issue 4.3, GOCE High Level Processing Facility

  • Hamming RW (1998) Digital filters. Dover Pubn Inc, Mineola

    Google Scholar 

  • Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung, Klassische und moderne Methoden, 3rd edn. Wichmann, Heidelberg

    Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81(2):121–136. doi:10.1007/s00190-006-0094-0

    Article  Google Scholar 

  • Heisenberg WK (1927) On the perceptual content of quantum theoretical kinematics and mechanics. Zs f Phys 43(2–4):172–198

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman & Co, San Francisco

    Google Scholar 

  • Hirt C, Kuhn M, Featherstone WE, Göttl F (2012) Topographic/isostatic evaluation of new-generation GOCE gravity field models. J Geophys Res 117:B05407. doi:10.1029/2011JB008878

    Google Scholar 

  • Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40(16):4279–4283. doi:10.1002/grl.50838

    Article  Google Scholar 

  • Holschneider M (1995) Wavelets: an analysis tool. Oxford mathematical monographs. Oxford University Press, New York

    Google Scholar 

  • Janák J, Wild-Pfeiffer F (2010) Comparison of various topographic-isostatic effects in terms of smoothing gradiometric observations. In Sansò F, Mertikas SPP (eds), Gravity, geoid and Earth observation, IAG Symposia, vol. 135, Springer, 377–381. doi:10.1007/978-3-642-10634-7_50

  • Janák J, Wild-Pfeiffer F, Heck B (2012) Smoothing the gradiometric observations using different topographic-isostatic models: A regional case study. In Sneeuw et al. (eds), Proceedings of the VII Hotine-Marussi Symposium, Rome, Italy, 2009, IAG Symposia, vol. 137, Springer, 245–250. doi:10.1007/978-3-642-22078-4_37

  • Kaban MK, Schwintzer P, Reigber C (2004) A new isostatic model of the lithosphere and gravity field. J Geod 78(6):368–385. doi:10.1007/s00190-004-0401-6

    Article  Google Scholar 

  • Keller W (2004) Wavelets in geodesy and geodynamics. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Kuhn M, Seitz K (2005) Comparison of Newton’s integral in the space and frequency domains. In Sansò F (ed), A window on the future of geodesy, IAG Symposia, vol. 128, Springer, 386–391. doi:10.1007/3-540-27432-4_66

  • Little SA, Carter PH, Smith DK (1993) Wavelet analysis of a bathymetric profile reveals anomalous crust. Geophys Res Lett 20(18):1915–1918. doi:10.1029/93GL01880

    Article  Google Scholar 

  • Liu L, Hsu H, Grafarend EW (2007) Normal Morlet wavelet transform and its application to the Earth’s polar motion. J Geophys Res 112:B08401. doi:10.1029/2006JB004895

    Google Scholar 

  • Luo X (2013) GPS stochastic modelling—signal quality measures and ARMA processes. Springer Theses: Recognizing Outstanding Ph.D. Research, 331pp, Springer

  • Makhloof AA, Ilk K (2008) Effects of topographic-isostatic masses on gravitational functionals at the Earth’s surface and at airborne and satellite altitudes. J Geod 82(2):93–111. doi:10.1007/s00190-007-0159-8

    Article  Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(3):395–405. doi:10.1007/BF02521480

    Article  Google Scholar 

  • Morlet J, Arens G, Fourgeau E, Giard D (1982a) Wave propagation and sampling theory—part I: complex signal and scattering in multilayered media. Geophys 47(2):203–221. doi:10.1190/1.1441328

    Article  Google Scholar 

  • Morlet J, Arens G, Fourgeau E, Giard D (1982b) Wave propagation and sampling theory—part II: sampling theory and complex waves. Geophysics 47(2):222–236. doi:10.1190/1.1441329

    Article  Google Scholar 

  • Novák P, Tenzer R (2013) Gravitational gradients at satellite altitudes in global geophysical studies. Surv Geophys 34(5):653–673. doi:10.1007/s10712-013-9243-1

    Article  Google Scholar 

  • Novák P, Kern M, Schwarz KP, Heck B (2003) Evaluation of band-limited topographical effects in airborne gravimetry. J Geod 76(11–12):597–604. doi:10.1007/s00190-002-0282-5

    Google Scholar 

  • Pavlis N, Factor J, Holmes S (2007) Terrain-related gravimetric quantities computed for the next EGM. In Kiliçoğlu A, Forsberg R (eds), Proceedings of the 1st International Symposium IGFS: Gravity Field of the Earth, Istanbul, Turkey, 2006, Harita Dergisi, Special Issue 18, 318–323

  • Rummel R, Colombo OL (1985) Gravity field determination from satellite gradiometry. Bull Géod 59(3):233–246. doi:10.1007/BF02520329

    Article  Google Scholar 

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. Report 388, 33pp, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Satirapod C, Rizos C (2005) Multipath mitigation by wavelet analysis for GPS base station applications. Surv Rev 38(295):2–10. doi:10.1179/003962605791521699

    Article  Google Scholar 

  • Satirapod C, Ogaja C, Wang J, Rizos C (2001) An approach to GPS analysis incorporating wavelet decomposition. Artif Satell 36(2):27–35

    Google Scholar 

  • Schuh WD (2010) Filtering of correlated data—stochastical considerations within GOCE data processing. Lecture material for the GOCE Summer School, 31 May–4 June 2010, Herrsching, Germany

  • Tenzer R, Novák P (2013) Effect of crustal density structures on GOCE gravity gradient observables. Terr Atmos Ocean Sci 24(5):793–807. doi:10.3319/TAO.2013.05.08.01(T)

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  • Trauth MH (2007) MATLAB recipes for Earth sciences, 2nd edn. Springer, Berlin

    Google Scholar 

  • Tsoulis D, Kuhn M (2007) Recent developments in synthetic Earth gravity models in view of the availability of digital terrain and crustal databases of global coverage and increased resolution. In Kiliçoğlu A, Forsberg R (eds), Proceedings of the 1st International Symposium IGFS: Gravity Field of the Earth, Istanbul, Turkey, 2006, Harita Dergisi, Special Issue 18, 354–359

  • Wang J, Wang J, Roberts C (2009) Reducing GPS carrier phase errors with EMD-wavelet for precise static positioning. Surv Rev 41(312):152–161. doi:10.1179/003962609X390067

    Article  Google Scholar 

  • Wild F, Heck B (2005) A comparison of different isostatic models applied to satellite gravity gradiometry. In Jekeli C (ed), Gravity, geoid and space missions, IAG Symposia, vol. 129, Springer, 230–235. doi:10.1007/3-540-26932-0_40

  • Wild-Pfeiffer F (2007) Auswirkungen topographisch-isostatischer Massen auf die Satellitengradiometrie. C 604, Deutsche Geodätische Kommission, München

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geod 82(10):637–653. doi:10.1007/s00190-008-0219-8

    Article  Google Scholar 

  • Wild-Pfeiffer F, Heck B (2007) Comparison of the modelling of topographic and isostatic masses in the space and the frequency domain for use in satellite gravity gradiometry. In Kiliçoğlu A, Forsberg R (eds), Proceedings of the 1st International Symposium IGFS: Gravity Field of the Earth, Istanbul, Turkey, 2006, Harita Dergisi, Special Issue 18, 312–317

  • Wittwer T, Klees R, Seitz K, Heck B (2008) Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. J Geod 82(4–5):223–229. doi:10.1007/s00190-007-0172-y

    Article  Google Scholar 

  • Wu J, Gao J, Li M, Wang Y (2009) Wavelet transform for GPS carrier phase multipath mitigation. Proceedings of the 1st International Conference on Information Science and Engineering, Nanjing, China, 2009, 1019–1022. doi:10.1109/ICISE.2009.1344

  • Yi T, Li H, Wang G (2006) Cycle slip detection and correction of GPS carrier phase based on wavelet transform and neural network. Proceedings of the 6th International Conference on Intelligent Systems Design and Applications, Jinan, China, 2006, 46–50. doi:10.1109/ISDA.2006.129

  • Zhong P, Ding XL, Zheng DW, Chen W, Huang DF (2008) Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation. GPS Solut 12(2):109–117. doi:10.1007/s10291-007-0071-y

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Federal Ministry of Education and Research under grant number 03G0726F within the REAL GOCE project of the GEOTECHNOLOGIEN Programme. The authors would like to thank N.K. Pavlis for providing the global topographic data base DTM2006.0 and the Steinbuch Center for Computing at the Karlsruhe Institute of Technology for the allocation of computing time on the high performance parallel computer system HC3. Finally, two anonymous reviewers as well as the Editor-in-Chief are acknowledged for their valuable comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grombein.

Appendix

Appendix

For the band-pass filter in Eq. (30), the filter coefficients used

$$ c_{|k|} = \left\{\begin{array}{ll} 2\Updelta t \left(f_h - f_{l} \right) \quad & k = 0 \\ \left.\frac{\sin{2\pi f \Updelta t}}{\pi k}\right|_{f_{l}}^{f_h} \frac{\sin{\pi k / N}}{\pi k / N} \quad & k = 1,\ldots,N-1 \\ -\frac{1}{2} {\sum \limits _{j=-N+1}^{N-1}} c_{|j|} \quad & k = N \end{array}\right. $$

are adapted from Hamming (1998, p. 127ff.) The sampling period is denoted by \(\Updelta t, \,f_{l}\) and f h are the lower and upper cutoff frequencies, respectively, and N is the filter length. In this study, these parameters have been set to \(\Updelta t=1\hbox{s},\, f_{l}= 5 \,\hbox{mHz}, \,f_{h}= 100 \hbox{ mHz}\), and N = 1,000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grombein, T., Luo, X., Seitz, K. et al. A Wavelet-Based Assessment of Topographic-Isostatic Reductions for GOCE Gravity Gradients. Surv Geophys 35, 959–982 (2014). https://doi.org/10.1007/s10712-014-9283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9283-1

Keywords

Navigation