Skip to main content
Log in

A possible genetic basis for vulnerability in Euphydryas maturna (Lepidoptera: Nymphalidae)

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Nearly all of the known populations of Scarce Fritillary, Euphydryas maturna (Linnaeus, 1758), are declining in Western and Central Europe. In order to identify the possible reasons for its vulnerability we surveyed the population genetics of this butterfly species using multi-locus genotype data. Females of our target species lay lots of eggs in one or two batches only and pre-hibernation caterpillars live and feed gregariously in a nest. As a consequence, a random unfavourable event can eliminate most offspring of a particular female resulting in a strong genetic drift effect combined with inbreeding. Thus, our hypothesis regarding the genetic composition of Scarce Fritillary populations suggests that: (1) there will be random fluctuations in allele frequencies from generation to generation; (2) populations should exhibit small effective sizes and a relatively high level of heterozygote deficiency, and; (3) the majority of the individuals in a population will be composed of the offspring of just a few females. In order to test these hypotheses, fine-scale genetic structure was studied in two subpopulations of a Hungarian Scarce Fritillary population for 4 consecutive years (generations) using enzyme polymorphism data. The results supported all of our assumptions. We detected random fluctuation in the frequency of several alleles, small effective population size and the index of heterozygote deficiency (F IS) indicated a considerable level of inbreeding in most samples. Furthermore, average values of relatedness were also fairly high, and we were able to identify 17 putative sib families in total with the two subpopulations based on estimation of individual gametic phases. Thus, the present study suggests that intrinsic factors (e.g. specific life history) might increase the sensitivity of a species to various threatening factors (e.g. habitat loss or fragmentation) and result in the vulnerability of the given species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Awad M, Laugier, G. J. M., Loiseau A, Nedvěd O (2015) Unbalanced polyandry in wild-caught ladybirds Harmonia axyridis (Coleoptera: Coccinellidae). Appl Entomol Zool 50(4):427–434. doi:10.1007/s13355-015-0348-5

    Article  Google Scholar 

  • Bentzen P, Olsen JB, McLean JE, Seamons TR, Quinn TP (2001) Kinship analysis of Pacific Salmon: insights into mating, homing, and timing of reproduction. J Hered 92(2):127–136. doi:10.1093/jhered/92.2.127

    Article  CAS  PubMed  Google Scholar 

  • Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. J Zool Syst Evol Res 43(2):157–165. doi:10.1111/j.1439-0469.2005.00305.x

    Article  Google Scholar 

  • Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18(10):503–511. doi:10.1016/S0169-5347(03)00225-8

    Article  Google Scholar 

  • Bos DH, Turner SM, Andrew DeWoody J (2007) Haplotype inference from diploid sequence data: evaluating performance using non-neutral MHC sequences. Hereditas 144(6):228–234. doi:10.1111/j.2007.0018-0661.01994.x

    Article  PubMed  Google Scholar 

  • Cizek O, Konvicka M (2005) What is a patch in a dynamic metapopulation? Mobility of an endangered woodland butterfly, Euphydryas maturna. Ecography 28:1–10. doi:10.1111/j.2005.0906-7590.04268.x

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214. doi:10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Dolek M, Freese-Hager A, Cizek O, Gros P (2007) Mortality of early instars in the highly endangered butterfly Euphydryas maturna (Linnaeus, 1758) (Nymphalidae). Nota Lepidopterol 29(3/4):221–224

    Google Scholar 

  • Dolek M, Freese-Hager A, Geyer A, Balletto E, Bonelli S (2012) Multiple oviposition and larval feeding strategies in Euphydryas maturna (Linné, 1758) (Nymphalidae) at two disjoint European sites. J Insect Conserv 17(2):357–366. doi:10.1007/s10841-012-9516-x

    Article  Google Scholar 

  • Eliasson CU, Shaw MR (2003) Prolonged life cycles, oviposition sites, foodplants and Cotesia parasitoids of Melitaeini butterflies in Sweden. Oedippus 21:1–52

    Google Scholar 

  • Excoffier L, Lischer, H. E. L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Balding D (2003) Gametic phase estimation over large genomic regions using an adaptive window approach. Hum Genom 1:7. doi:10.1186/1479-7364-1-1-7

    Article  CAS  Google Scholar 

  • Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A et al (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9:388–397

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486

    Article  Google Scholar 

  • Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147(1):270–274. doi:10.1016/j.biocon.2011.11.028

    Article  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Change Biol 17(1):194–205. doi:10.1111/j.1365-2486.2010.02233.x

    Article  Google Scholar 

  • Inada K, Kitade O, Morino H (2011) Paternity analysis in an egg-carrying aquatic insect Appasus major (Hemiptera: Belostomatidae) using microsatellite DNA markers. Entomol Sci 14(1):43–48. doi:10.1111/j.1479-8298.2010.00420.x

    Article  Google Scholar 

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177(2):927–935. doi:10.1534/genetics.107.075481

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6(2):576–579. doi:10.1111/j.1471-8286.2006.01256.x

    Article  CAS  Google Scholar 

  • Konvicka M, Benes J, Cizek O, Kopecek F, Konvicka O, Vitaz L (2007) How too much care kills species: grassland reserves, agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. J Insect Conserv 12(5):519–525. doi:10.1007/s10841-007-9092-7

    Article  Google Scholar 

  • Konvička M, Cížek O, Filipová L, Fric Z, Beneš J, Křupka M et al (2005) For whom the bells toll: demography of the last population of the butterfly Euphydryas maturna in the Czech Republic. Biol Bratisl 60(5):551–557

    Google Scholar 

  • Louy D, Habel JC, Ulrich W, Schmitt T (2013) Out of the Alps: the biogeography of a disjunctly distributed mountain butterfly, the Almond-Eyed Ringlet Erebia alberganus (Lepidoptera, Satyrinae). J Hered. doi:10.1093/jhered/est081

    PubMed  Google Scholar 

  • Lowe A, Harris S, Ashton P (2009). Ecological genetics: design, analysis, and application. Wiley, Hoboken

    Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci 99(9):6070–6074. doi:10.1073/pnas.052131199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neve G, Barascud B, Descimon H, Baguette M (2008) Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol 8:84. doi:10.1186/1471-2148-8-84

    Article  PubMed  PubMed Central  Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M et al (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13(8):969–979. doi:10.1111/j.1461-0248.2010.01487.x

    PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pecsenye K, Bereczki J, Tihanyi B, Tóth A, Peregovits L, Varga Z (2007) Genetic differentiation among the Maculinea species (Lepidoptera: Lycaenidae) in eastern Central Europe. Biol J Linn Soc 91(1):11–21. doi:10.1111/j.1095-8312.2007.00781.x

    Article  Google Scholar 

  • Pecsenye K, Bereczki J, Juhász E, Tartally A, Varga Z (2015) Contrasting genetic structure in cuckoo and predatory Maculinea butterflies. Conserv Genet 16(4):939–954

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43(2):258–275

    Article  Google Scholar 

  • Rákosy L, Pecsenye K, Mihali C, Tóth A, Varga Z (2012) Taxonomic review of Euphydryas maturna (Linnaeus, 1758)(Lepidoptera, Nymphalidae) with description of a new subspecies from Dobrogea (Romania) and notes on conservation biology. Acta Zool Acad Sci Hung 58(2):145–161

    Google Scholar 

  • Sandrin L, Meunier J, Raveh S, Walser J-C, Kölliker M (2015) Multiple paternity and mating group size in the European earwig, Forficula auricularia. Ecol Entomol 40(2):159–166. doi:10.1111/een.12171

    Article  Google Scholar 

  • Schmitt T, Hewitt GM (2004) The genetic pattern of population threat and loss: a case study of butterflies. Mol Ecol 13(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Schmitt T, Röber S, Seitz A (2005) Is the last glaciation the only relevant event for the present genetic population structure of the meadow brown butterfly Maniola jurtina (Lepidoptera: Nymphalidae)? Biol J Linn Soc 85(4):419–431. doi:10.1111/j.1095-8312.2005.00504.x

    Article  Google Scholar 

  • Schmitt T, Rákosy L, Abadjiev S, Müller P (2007) Multiple differentiation centres of a non-Mediterranean butterfly species in south-eastern Europe. J Biogeogr 34(6):939–950. doi:10.1111/j.1365-2699.2006.01684.x

    Article  Google Scholar 

  • Song SD, Drew R, a I, Hughes JM (2007) Multiple paternity in a natural population of a wild tobacco fly, Bactrocera cacuminata (Diptera: Tephritidae), assessed by microsatellite DNA markers. Mol Ecol 16(11):2353–2361. doi:10.1111/j.1365-294X.2007.03277.x

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood, J. J. D., Asher J et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303(5665):1879–1881. doi:10.1126/science.1095046

    Article  CAS  PubMed  Google Scholar 

  • van Swaay C, Warren M (1999). Red data book of European butterflies (Rhopalocera). Council of Europe

  • van Swaay CM, Cuttelod A, Collins S, Maes D, Munguira L, Šašić M et al. (2010). European red list of butterflies. http://library.wur.nl/WebQuery/clc/1939351. Accessed 16 Dec 2015

  • Vandewoestijne S, Martin T, Liegeois S, Baguette M (2004) Dispersal, landscape occupancy and population structure in the butterfly Melanargia galathea. Basic Appl Ecol 5(6):581–591. doi:10.1016/j.baae.2004.07.004

    Article  Google Scholar 

  • Vrabec V, Jindra Z (1998) The caterpillars of the rare butterfly Euphydryas maturna (Lepidoptera: Nymphalidae) as food for the predatory bug Picromerus bidens (Heteroptera: Pentatomidae). Entomol Probl 29(2):87–90

    Google Scholar 

  • Vrabec V, Čížek O, Beneš J (2002) Euphydryas maturna. In: Butterflies of Czech Republic: distribution and conservation. SOM, Prague, pp 462–457

    Google Scholar 

  • Wahlberg N (2000) Comparative descriptions of the immature stages and ecology of five Finnish melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol Fenn 11:167–174

    Google Scholar 

  • Wahlberg N (2001) On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomol Fenn 12:244–250

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Weidemann, H. J. (1985). Zum Einfluß veränderter Bewirtschaftungsweisen auf bestandsbedrohte Tagfalterarten. Maivogel (Euphydryas maturna) und Storchschnabelbläuling (Eumedonia eumedon) in Franken. Berichte der naturforschenden Gesellschaft Bamberg 60:9–130

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Assoc. Inc, Sunderland

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Hungarian research Project Grants NKFP-3 B/023/2004 and OTKA K84071. JB was supported by a János Bolyai Scholarship of the Hungarian Academy of Sciences. We thank V. Mester for help with electrophoretic work, while L. Rákosy, S. Szabó, and P. Kozma contributed to sampling at several sites. The support of the Hungarian Nature Conservation Authorities is also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Pecsenye.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecsenye, K., Tóth, A., Bereczki, J. et al. A possible genetic basis for vulnerability in Euphydryas maturna (Lepidoptera: Nymphalidae). Genetica 145, 151–161 (2017). https://doi.org/10.1007/s10709-017-9953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9953-2

Keywords

Navigation