Skip to main content
Log in

Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barlow PN (1977) Determinants of nuclear chromatin structure in angiosperms. Nat Bot Biol Veg 18:193–206

    CAS  Google Scholar 

  • Brasileiro-Vidal AC, Melo-Oliveira MB, Carvalheira GMG, Guerra M (2009) Different chromatin fractions of tomato (Solanum lycopersicum L.) and related species. Micron 40:851–859

    Article  PubMed  CAS  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  PubMed  CAS  Google Scholar 

  • Chang SB, Yang TJ, Datema E et al (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosom Res 16:919–933

    Article  CAS  Google Scholar 

  • Cremonini R, Ruffini Castiglione M, Grif VG et al (2003) Chromosome banding and DNA methylation patterns, chromatin organization and nuclear DNA content in Zingeria biebersteiniana. Biol Plantarum 46:543–550

    Article  CAS  Google Scholar 

  • Dantas LG, Guerra M (2010) Chromatin differentiation between Theobroma cacao L. and T. grandiflorum. Genet Mol Biol 33:94–98

    Article  Google Scholar 

  • Delay C (1949) Recherches sur la structure des noyaux quiescents chez les phanérogames. Rev Cytol Cytophysiol Veg 10:103–228

    Google Scholar 

  • Dhar MK, Fuchs J, Houben A (2009) Distribution of eu- and heterochromatin in Plantago ovata. Cytogenet Genom Res 125:235–240

    Article  CAS  Google Scholar 

  • Fransz P, Hans de Jong J, Lysak M, Ruffini Castiglione M, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromo centers from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, ten Hoopen R, Tessadori F (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosom Res 14:71–82

    Article  CAS  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns–from conservation to diversity. Trends Plant Sci 11:199–208

    Article  PubMed  CAS  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:1–6

    Article  Google Scholar 

  • Guerra M (1987) Cytogenetics of Rutaceae IV. Structure and systematic significance of interphase nuclei. Cytologia 52:213–222

    Google Scholar 

  • Guerra M (1988a) Characterization of different types of condensed chromatin in Costus (Zingiberaceae). Plant Syst Evol 158:107–115

    Article  CAS  Google Scholar 

  • Guerra M (1988b) Mitotic and meiotic analysis of a pericentric inversion associated with a tandem duplication in Eleutherine bulbosa. Chromosoma 97:80–87

    Article  Google Scholar 

  • Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ (2006) Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41

    Article  PubMed  CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I. Jahrb Wiss Bot 69:762–818

    Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP, Ashley T (2006) Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genom Res 114:96–125

    Article  CAS  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants—a dynamic affair. Biochim Biophys Acta 1769:308–315

    PubMed  CAS  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z et al (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA, Jiang J (2008) Histone modifications associated with both A and B chromosomes of maize. Chromosom Res 16:1203–1214

    Article  CAS  Google Scholar 

  • Kouzarides T (2007) Review chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed  CAS  Google Scholar 

  • Manzanero S, Rutten T, Kotseruba V, Houben A (2002) Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosom Res 10:467–476

    Article  CAS  Google Scholar 

  • Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637

    Article  PubMed  CAS  Google Scholar 

  • Nagl W (1979) Condensed interphase chromatin in plant and animal cell nuclei: fundamental of genetic information. Nature 447:951–958

    Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    PubMed  CAS  Google Scholar 

  • Ribeiro T, Viegas W, Morais-Cecílio L (2009) Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae). Sex Plant Reprod 22:1–7

    Article  PubMed  CAS  Google Scholar 

  • Richards E, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ruffini Castiglione M, Giraldi E, Frediani M (1995) The DNA methylation pattern of Allium cepa metaphase chromosomes. Biol Zentralbl 114:57–66

    Google Scholar 

  • Schotta G, Lachner M, Sarma K et al (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Gene Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Vyskot B, Siroky J, Hladilova R, Belyaev ND, Turner BM (1999) Euchromatic domains in plant chromosomes as revealed by H4 histone acetylation and early DNA replication. Genome 42:343–350

    Article  PubMed  CAS  Google Scholar 

  • Wanzenböck EM, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA trans-formation associate with the nucleolus and do not require up-stream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016

    Article  PubMed  Google Scholar 

  • Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA 95:7480–7484

    Article  PubMed  CAS  Google Scholar 

  • Wolf KW, Turner BM (1996) The pattern of histone H4 acetylation on the X chromosome during spermatogenesis of the desert locust Schistocerca gregaria. Genome 39:854–865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for financial support, and Cibele Caio, Magdalena Vaio, and Paola Gaiero for corrections to the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feitoza, L., Guerra, M. Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica 139, 305–314 (2011). https://doi.org/10.1007/s10709-011-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9550-8

Keywords

Navigation