Skip to main content

The Organization of Genomic DNA in Mitotic Chromosomes: A Novel View

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

In 1878, W. Flemming discovered a nuclear substance that was visible on staining under the light microscope and named it ‘chromatin’, which is the basic unit of genomic DNA organisation. During cell division, chromatin forms into microscopic bodies, called ‘chromosomes’, which ensures the transmission of the duplicated genomic DNA. The term ‘chromosome’ is derived from the Greek for ‘coloured body’, reflecting the observation that a condensed chromosome is clearly visible with dyes. Long before the discovery of DNA as the genetic material, the mitotic chromosome has fascinated biologists as being a candidate structure involved in heredity. The basic mitotic chromosome structure is therefore expected to be well conserved among eukaryotes, although some minor differences may be found between different groups of organisms. In this chapter, we provide a new insight into mitotic chromosome structure with an historical background: The available evidence suggests that mitotic chromosomes essentially consist of irregularly-folded nucleosome fibers (beads-on-a-string) without a 30-nm chromatin fiber. We also discuss structural differences between plant and mammalian chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Luke M, Laemmli UK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64:137–148

    Article  PubMed  CAS  Google Scholar 

  • Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–880

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci USA 95:10785–10790

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97:6634–6639

    Article  PubMed  CAS  Google Scholar 

  • Bassett A, Cooper S, Wu C, Travers A (2009) The folding and unfolding of eukaryotic chromatin. Curr Opin Genet Dev 19:159–165

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS (2006) Mitotic chromosome structure and condensation. Curr Opin Cell Biol 18:632–638

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS, Sedat JW, Agard DA (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J Cell Biol 105:77–92

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    Article  PubMed  CAS  Google Scholar 

  • Bouchet-Marquis C, Dubochet J, Fakan S (2006) Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture. Histochem Cell Biol 125:43–51

    Article  PubMed  CAS  Google Scholar 

  • Boy de la Tour E, Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55:937–944

    Article  PubMed  CAS  Google Scholar 

  • Carpenter AJ, Porter AC (2004) Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 15:5700–5711

    Article  PubMed  CAS  Google Scholar 

  • Chang CJ, Goulding S, Earnshaw WC, Carmena M (2003) RNAi analysis reveals an unexpected role for topoisomerase II in chromosome arm congression to a metaphase plate. J Cell Sci 116: 4715–4726

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S (2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J Cell Biol 168:41–54

    Article  PubMed  CAS  Google Scholar 

  • Coelho PA, Queiroz-Machado J, Sunkel CE (2003) Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J Cell Sci 116:4763–4776

    Article  PubMed  CAS  Google Scholar 

  • Cole A (1967) Chromosome structure. Theor Biophys 1:305–375

    Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113

    Article  PubMed  CAS  Google Scholar 

  • de Frutos M, Raspaud E, Leforestier A, Livolant F (2001) Aggregation of nucleosomes by divalent cations. Biophys J 81:1127–1132

    Article  PubMed  Google Scholar 

  • Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186

    Article  PubMed  CAS  Google Scholar 

  • Dekker J (2008) Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 283:34532–34540

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    Article  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    Article  PubMed  CAS  Google Scholar 

  • Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96:84–93

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105:19732–19737

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, van Driel R (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 18:676–681

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    Article  PubMed  CAS  Google Scholar 

  • Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Fujimoto S, Ito M, Matsunaga S, Fukui K (2005) An upper limit of the ratio of DNA volume to nuclear volume exists in plants. Genes Genet Syst 80:345–350

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK (1986) Metaphase chromosome structure: involvement of topoisomerase II. J Mol Biol 188:613–629

    Article  PubMed  CAS  Google Scholar 

  • Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    Article  PubMed  CAS  Google Scholar 

  • Grigoryev SA, Arya G, Correll S, Woodcock CL, Schlick T (2009) Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc Natl Acad Sci USA 106:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Guo XW, Th’ng JP, Swank RA, Anderson HJ, Tudan C, Bradbury EM, Roberge M (1995) Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J 14:976–985

    PubMed  CAS  Google Scholar 

  • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol 120:601–612

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117:6435–6445

    Article  PubMed  CAS  Google Scholar 

  • Horowitz RA, Giannasca PJ, Woodcock CL (1990) Ultrastructural preservation of nuclei and chromatin: improvement with low-temperature methods. J Microsc 157:205–224

    Article  PubMed  CAS  Google Scholar 

  • Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Sugiyama S, Travers AA, Ohyama T (2007) Self-assembly of double-stranded DNA molecules at nanomolar concentrations. Biochemistry 46:164–171

    Article  PubMed  CAS  Google Scholar 

  • Joti Y, Hikima T, Nishino Y, kamada F, Hihara S, Takata H, Ishikawa T, Maeshima K (2012) Chromosomes without a 30-nm chromatin fibre. Nucleus (in press)

    Google Scholar 

  • Jun S, Wright A (2010) Entropy as the driver of chromosome segregation. Nat Rev Microbiol 8:600–607

    Article  PubMed  CAS  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 17–34

    Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282:487–490

    Article  PubMed  CAS  Google Scholar 

  • Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115:175–194

    Article  PubMed  Google Scholar 

  • König P, Braunfeld MB, Sedat JW, Agard DA (2007) The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116:349–372

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  PubMed  CAS  Google Scholar 

  • Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534–540

    Article  PubMed  CAS  Google Scholar 

  • Kurihara D, Matsunaga S, Kawabe A, Fujimoto S, Noda M, Uchiyama S, Fukui K (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res 15:33–49

    Article  PubMed  CAS  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    Article  PubMed  CAS  Google Scholar 

  • Liu Cm CM, McElver J, Tzafrir I, Joosen R, Wittich P, Patton D, Van Lammeren AA, Meinke D (2002) Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J 29:405–415

    Article  PubMed  Google Scholar 

  • Lyon MF (2003) The Lyon and the LINE hypothesis. Semin Cell Dev Biol 14:313–318

    Article  PubMed  CAS  Google Scholar 

  • MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39

    Article  PubMed  CAS  Google Scholar 

  • Maeshima K, Eltsov M (2008) Packaging the genome: the structure of mitotic chromosomes. J Biochem 143:145–153

    Article  PubMed  CAS  Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  PubMed  CAS  Google Scholar 

  • Maeshima K, Eltsov M, Laemmli UK (2005) Chromosome structure: improved immunolabeling for electron microscopy. Chromosoma 114:365–375

    Article  PubMed  Google Scholar 

  • Maeshima K, Hihara S, Eltsov M (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol 22:291–297

    Article  PubMed  CAS  Google Scholar 

  • Marsden MP, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1930) A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc Natl Acad Sci USA 16:791–796

    Article  PubMed  CAS  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395–1402

    PubMed  CAS  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10:177–200

    Article  PubMed  CAS  Google Scholar 

  • Morrison C, Henzing AJ, Jensen ON, Osheroff N, Dodson H, Kandels-Lewis SE, Adams RR, Earnshaw WC (2002) Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res 30:5318–5327

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    Article  PubMed  CAS  Google Scholar 

  • Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31:1644–1653

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi K, Katagiri C, Kishimoto T (1993) Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262: 2033–2035

    Article  PubMed  CAS  Google Scholar 

  • Okada TA, Comings DE (1980) A search for protein cores in chromosomes: is the scaffold an artifact? Am J Hum Genet 32:814–832

    PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    Article  PubMed  CAS  Google Scholar 

  • Olins DE, Olins AL (2003) Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 4:809–814

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494

    Article  PubMed  CAS  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morphol Jahrb 10:214–330

    Google Scholar 

  • Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Rhodes D (2006) Structure of the ‚‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 16:336–343

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506–6511

    Article  PubMed  CAS  Google Scholar 

  • Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA 105:8872–8877

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Goldberg IG, Wood ER, Earnshaw WC (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994) Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13:4938–4952

    PubMed  CAS  Google Scholar 

  • Sakaguchi A, Kikuchi A (2004) Functional compatibility between isoform alpha and beta of type II DNA topoisomerase. J Cell Sci 117:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Tsujimoto-Inui Y, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of B overload stress in Arabidopsis thaliana. Plant Cell 23:3533–3546

    Article  PubMed  CAS  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  PubMed  CAS  Google Scholar 

  • Sedat J, Manuelidis L (1978) A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol 42(Pt 1):331–350

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui NU, Stronghill PE, Dengler RE, Hasenkampf CA, Riggs CD (2003) Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130:3283–3295

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui NU, Rusyniak S, Hasenkampf CA, Riggs CD (2006) Disruption of the Arabidopsis SMC4 gene, AtCAP-C, compromises gametogenesis and embryogenesis. Planta 223:990–997

    Article  PubMed  CAS  Google Scholar 

  • Steffensen S, Coelho PA, Cobbe N, Vass S, Costa M, Hassan B, Prokopenko SN, Bellen H, Heck MM, Sunkel CE (2001) A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr Biol 11:295–307

    Article  PubMed  CAS  Google Scholar 

  • Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2001) Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 155:899–910

    Article  PubMed  CAS  Google Scholar 

  • Strukov YG, Wang Y, Belmont AS (2003) Engineered chromosome regions with altered sequence composition demonstrate hierarchical large-scale folding within metaphase chromosomes. J Cell Biol 162:23–35

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Hogan E, Koshland D (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9:587–599

    Article  PubMed  CAS  Google Scholar 

  • Takata H, Uchiyama S, Nakamura N, Nakashima S, Kobayashi S, Sone T, Kimura S, Lahmers S, Granzier H, Labeit S, Matsunaga S, Fukui K (2007) A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12:269–284

    Article  PubMed  CAS  Google Scholar 

  • Takemoto A, Kimura K, Yokoyama S, Hanaoka F (2004) Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J Biol Chem 279:4551–4559

    Article  PubMed  CAS  Google Scholar 

  • Takemoto A, Maeshima K, Ikehara T, Yamaguchi K, Murayama A, Imamura S, Imamoto N, Yokoyama S, Hirano T, Watanabe Y, Hanaoka F, Yanagisawa J, Kimura K (2009) The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat Struct Mol Biol 16:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Tavormina PA, Come MG, Hudson JR, Mo YY, Beck WT, Gorbsky GJ (2002) Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis. J Cell Biol 158:23–29

    Article  PubMed  CAS  Google Scholar 

  • Tremethick DJ (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128:651–654

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T, Takao T, Matsunaga S, Fukui K (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50:917–925

    Article  PubMed  CAS  Google Scholar 

  • Vagnarelli P, Hudson DF, Ribeiro SA, Trinkle-Mulcahy L, Spence JM, Lai F, Farr CJ, Lamond AI, Earnshaw WC (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111(Pt 23):3497–3506

    PubMed  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97:99–109

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GS, Shermoen AW, O’Farrell PH, Davis I (1999) Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Curr Biol 9:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125:11–19

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42–52

    Article  PubMed  CAS  Google Scholar 

  • Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, Loregger T, Marchler-Bauer A, Tanaka K, Peters JM, Ogris E (2003) Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol 13:2058–2064

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K, Yoshikawa Y (2002) Compaction and condensation of DNA. In: Mahato RI, Kim SW (eds) Pharmaceutical perspectives of nucleic acid-based therapeutics. Taylor and Francis, New York, pp 137–163

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Eltosv, Prof. Dubochet, and Prof. Frangakis for collaboration with KM We would like to thank Prof. Laemmli, Prof. Fukui, Prof. Yoshikawa, Dr. Uchiyama and Ms. Hihara for exciting discussions. KM was supported by a MEXT grant-in-aid and JST CREST. HT is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Maeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Takata, H., Matsunaga, S., Maeshima, K. (2013). The Organization of Genomic DNA in Mitotic Chromosomes: A Novel View. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_3

Download citation

Publish with us

Policies and ethics