Skip to main content
Log in

FISH mapping and molecular organization of the major repetitive sequences of tomato

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

This paper presents a bird’s-eye view of the major repeats and chromatin types of tomato. Using fluorescence in-situ hybridization (FISH) with Cot-1, Cot-10 and Cot-100 DNA as probes we mapped repetitive sequences of different complexity on pachytene complements. Cot-100 was found to cover all heterochromatin regions, and could be used to identify repeat-rich clones in BAC filter hybridization. Next we established the chromosomal locations of the tandem and dispersed repeats with respect to euchromatin, nucleolar organizer regions (NORs), heterochromatin, and centromeres. The tomato genomic repeats TGRII and TGRIII appeared to be major components of the pericentromeres, whereas the newly discovered TGRIV repeat was found mainly in the structural centromeres. The highly methylated NOR of chromosome 2 is rich in [GACA]4, a microsatellite that also forms part of the pericentromeres, together with [GA]8, [GATA]4 and Ty1-copia. Based on the morphology of pachytene chromosomes and the distribution of repeats studied so far, we now propose six different chromatin classes for tomato: (1) euchromatin, (2) chromomeres, (3) distal heterochromatin and interstitial heterochromatic knobs, (4) pericentromere heterochromatin, (5) functional centromere heterochromatin and (6) nucleolar organizer region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arens P, Odinot P, van Heusden S, Lindhout P, Vosman B (1995) GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38: 84–90.

    PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42: 536–544.

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep. 9: 208–218.

    Article  CAS  Google Scholar 

  • Bennetzen JL (2000) The many hues of plant heterochromatin. Genome Biology 1: reviews 107.1–107.4.

    Article  Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organisation of Ty1-copia like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping in simple repeat sequences in the tomato genome. Mol Gen Genet 250: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10: 129–136.

    PubMed  CAS  Google Scholar 

  • Budiman MA, Chang SB, Lee S et al. (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108: 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Chang S-B (2004) Cytogenetic and molecular studies on tomato chromosomes using diploid tomato and tomato monosomic additions in tetraploid potato. PhD thesis. University of Wageningen.

  • Copenhaver G, Nickel K, Kuromori T et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468–2474.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107: 587–594.

    Article  PubMed  CAS  Google Scholar 

  • De Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4: 258–262.

    Article  Google Scholar 

  • De Jong JH, Zhong X-B, Fransz PF, Wennekes-van Eden J, Jacobsen E, Zabel P (2000) High resolution FISH reveals the molecular chromosomal organisation of repetitive sequences of individual tomato chromosomes. In: Olmo E, Redi CA, eds. Chromosomes Today. Switserland: Birkhäuser Verlag, 13: 267–275.

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8: 186–194.

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231: 233–242.

    PubMed  CAS  Google Scholar 

  • Ganal MW, Lapitan NLV, Tanksley SD (1988) A Molecular and Cytogenetic Survey of Major Repeated DNA Sequences in Tomato Lycopersicon esculentum. Mol Gen Genet 213: 262–268.

    Article  CAS  Google Scholar 

  • Ganal MW, Lapitan LV, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1995) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species L. pimpinellifolium. Theor Appl Genet 92: 935–951.

    Article  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8: 570–575.

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (2005) GYPSODE1: Gypsy-type element from wild potato. Repbase Reports 5: 246.

    Google Scholar 

  • Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.

    Article  Google Scholar 

  • Kocsis E, Trus BL, Steer CJ, Bisher ME, Steven AC (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol 107: 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Kuipers AGJ, Heslop-Harrison JS, Jacobsen E (1998) Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Genome 41: 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32: 992–998.

    Google Scholar 

  • Lapitan NLV, Ganal MW, Tanksley SK (1991) Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome 34: 509–514.

    CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S et al. (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Pich U, Harrison G et al. (1996a) The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 4: 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996b) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence homogeneity and chromosomal localisation. Mol Gen Genet 250: 305–315.

    PubMed  CAS  Google Scholar 

  • Peterson DG, Stack SM, Price HJ, Johnston JS (1995) Distribution of DNA in heterochromatin and euchromatin of Lycopersicon esculentum pachytene chromosomes. Tomato Genet Coop Rep 45: 35.

    Google Scholar 

  • Peterson DG, Price HJ, Johnston JS, Stack SM (1996) DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39: 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Pearson WR, Stack SM (1998) Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 41: 346–356.

    Article  CAS  Google Scholar 

  • Peterson DG, Lapitan NLV, Stack SM (1999) Localization of single- and Low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152: 427–439.

    PubMed  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB et al. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12: 795–807.

    Article  PubMed  CAS  Google Scholar 

  • Ramanna MS, Prakken P (1967) Structure of and homology between pachytene and somatic metaphase chromosomes of the tomato. Genetica 38: 115–133.

    Article  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136.

    Article  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3: 195–199.

    Article  Google Scholar 

  • Schwartz S, Zhang Z, Frazer KA et al. (2000) PipMaker – A web server for aligning two genomic DNA sequences. Genome Res 10: 577–586.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer G, Ganal M, Ninnemann H, Hemleben V (1988) Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theor Appl Genet 75: 679–684.

    Article  CAS  Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141: 683–708.

    PubMed  CAS  Google Scholar 

  • Song J, Dong F, Lilly JW, Stupar RM, Jiang J (2001) Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome 44: 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Szinay D, Chang S-B, Khrustaleva L et al. (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J (in press).

  • Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Tilford CA, Kuroda-Kawaguchi T, Skaletsky H et al. (2001) A physical map of the human Y chromosome. Nature 409: 943–945.

    Article  PubMed  CAS  Google Scholar 

  • Van Daelen RAJJ, Zabel P (1994) Preparation of high molecular weight plant DNA and analysis by pulsed field gel electrophoresis. In: Gelvin SB, Schilperoort RA, eds. Plant Molecular Biology Manual. Dordrecht: Kluwer Academic, H3: 1–21.

    Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley SD (2002) Deductions about the number, organization and evolution of genes in the tomato genome based on analysis of a large EST collection and selective genomic sequencing. Plant Cell 14: 1441–1456.

    Article  PubMed  Google Scholar 

  • Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Vosman B, Arens P, Rus-Kortekaas W, Smulders MJM (1992) Identification of highly polymorphic DNA regions in tomato. Theor Appl Genet 85: 239–244.

    Article  CAS  Google Scholar 

  • Wallace RB, Johnson MJ, Hirose T, Miyake T, Kawashima EH, Itakura K (1981) The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequences to rabbit β-globin DNA. Nucleic Acids Res 9: 879–894.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromere heterochromatin: comparative composition in the tomato genome. Genetics 172: 2529–2540.

    Article  PubMed  CAS  Google Scholar 

  • Weide RJ, Hontelez J, van Kammen A, Koornneef M, Zabel P (1998) Paracentromeric sequences on tomato chromosome 6 show homology to human satellite III and to the mammalian CENP-B binding box. Mol Gen Genet 259: 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Wolters AMA, Schoenmakers HCH, van der Meulen-Muisers JJM et al. (1991) Limited DNA elimination from the irradiated potato parent in fusion products of albino Lycopersicon esculentum and Solanum tuberosum. Theor Appl Genet 83: 225–232.

    Article  Google Scholar 

  • Xu J, Earle ED (1994) Direct and sensitive fluorescence in situ hybridization of 45S rDNA on tomato chromosomes. Genome 37: 1062–1065.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Earle ED (1996a) High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma 104: 545–550.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Earle ED (1996b) Direct FISH of 5S rDNA on tomato pachytene chromosomes places the gene at the heterochromatic knob immediately adjacent to the centromere of chromosome 1. Genome 39: 216–221.

    Article  PubMed  CAS  Google Scholar 

  • Yang TJ, Lee S, Chang SB, Yu Y, de Jong JH, Wing RA (2005) In depth sequence analysis of the centromeric region of tomato chromosome 12: Identification of a large CAA block and characterization of centromeric retrotranposons. Chromosoma 114: 103–117.

    Article  PubMed  CAS  Google Scholar 

  • Zabel P, Meyer D, van de Stolpe O et al. (1985) Towards the construction of artificial chromosomes for tomato. In: van Vloten-Doting L, Groot GSP, Hall TC, eds. Molecular Form and Function of the Plant Genome. New York: Plenum, 609–624.

    Google Scholar 

  • Zamir D, Tanksley SD (1988) Tomato genome is comprised largely of fast-evolving, low copy-number sequences. Mol Gen Genet 213: 254–261.

    Article  CAS  Google Scholar 

  • Zhong XB, De Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Zhong XB, Fransz PF, Wennekes VEJ et al. (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13: 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Zwick MS, Hanson RE, McKnight TD et al. (1997) A rapid procedure for the isolation of Cot-1 DNA from plants. Genome 40: 138–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SB., Yang, TJ., Datema, E. et al. FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16, 919–933 (2008). https://doi.org/10.1007/s10577-008-1249-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1249-z

Key words

Navigation