Skip to main content

Advertisement

Log in

Early biochemical biomarkers for zinc in silver catfish (Rhamdia quelen) after acute exposure

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Contamination of aquatic ecosystems by metals causes various biochemical changes in aquatic organisms, and fish are recognized as indicators of environmental quality. Silver catfish were exposed to six concentrations of zinc (Zn): 1.0, 2.5, 5.0, 7.5, 10.0 and 12.5 mg/L for 96 h to determine the mean lethal concentration (LC50). The value obtained was 8.07 mg/L. In a second experiment, fish were exposed to concentrations of 1.0 or 5.0 mg/L Zn and a control for 96 h. Afterward, the tissues were collected for biochemical analysis. Lipid peroxidation, as indicated by thiobarbituric acid-reactive substance (TBARS), decreased in the liver and brain for all Zn concentrations tested, while in the gills TBARS levels increased at 1.0 mg/L and declined at 5.0 mg/L. Zn increased protein carbonyls in the muscle of silver catfish and decreased it in the other tissues. The enzyme superoxide dismutase increased in both exposed groups. However, catalase did not change. Glutathione S-transferase decreased in the liver and increased in the gills (1.0 mg/L), muscle (5.0 mg/L) and brain (1.0 and 5.0 mg/L). Nonprotein thiols changed only in brain and muscle tissue. Zn exposure inhibited acetylcholinesterase (AChE) activity in the brain at both concentrations tested, but did not change it in muscle. Exposure to Zn inhibited the activity of Na+/K+-ATPase in the gills and intestine at both concentrations tested. Our results demonstrate that Zn alters biochemical parameters in silver catfish and that some parameters such as AChE and Na+/K+-ATPase could be considered as early biomarkers of waterborne Zn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam M, Frankel T (2006) Gill ATPase of silver perch, Bidyanus bidyanus (Mitchell), and golden perch, Macquaria ambigua (Richardson): effects of environmental salt and ammonia. Aquaculture 251:118–133

    Article  CAS  Google Scholar 

  • Almeida JA, Diniz YS, Marquez SFG, Faine LA, Ribas BO, Burneiko RC, Novelli ELB (2002) The use of the oxidative stress as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ Int 27:673–679

    Article  CAS  PubMed  Google Scholar 

  • Atli G, Canli M (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol C: Toxicol Pharmacol 145:282–287

    Google Scholar 

  • Baysoy E, Atli G, Canli M (2013) The effects of salinity and salinity + metal (chromium and lead) exposure on ATPase activity in the gill and intestine of tilapia Oreochromis niloticus. Arch Environ Contam Toxicol 64:291–300

    Article  CAS  PubMed  Google Scholar 

  • Bianchini A, Castilho PC (1999) Effect of zinc exposure on oxygen consumption and gill Na+K+-ATPase of the estuarine crab Chasmagnathus granulate Dana, 1951 (Decapoda–Grapsidae). Bull Environ Contam Toxicol 62:63–69

    Article  CAS  PubMed  Google Scholar 

  • Bradford MMA (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–309

    Article  CAS  PubMed  Google Scholar 

  • Campana O, Sarasquete C, Blasco J (2003) Effecton on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Saf 55:116–125

    Article  CAS  PubMed  Google Scholar 

  • Canli M, Stagg RM (1996) The effects of in vivo exposure to cadmium, copper, and zinc on the activities of gill ATPases in the Norway lobster Nephrops norvegicus. Arch Environ Contam Toxicol 31:491–501

    Article  Google Scholar 

  • CONAMA (Conselho Nacional do Meio Ambiente) (2005) Resolução CONAMA nº357 de 17/03/05. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed 22 Jan 2015

  • Dautremepuits C, Paris-Palacios S, Betoulle S, Vernet G (2004) Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comp Biochem Physiol C: Toxicol Pharmacol 137:325–333

    Google Scholar 

  • Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257:163–173

    Google Scholar 

  • Ebrahimpour M, Alipour H, Rakhshah S (2010) Influence of water hardness on acute toxicity of copper and zinc on fish. Toxicol Ind Health 26:361–365

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environment pollution in African cat fish (Clarias gariepinus) from Nigeria Ogum River. Int J Environ Res Public Health 4:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Galloway TS, Millward N, Browne MA, Depledge MH (2002) Rapid assessment of organophosphorus/carbamate exposure in the bivalve mollusk Mytilus edulis using combined esterase activities as biomarkers. Aquat Toxicol 61:169–180

    Article  CAS  PubMed  Google Scholar 

  • Gioda CR, Lissner LA, Pretto A, da Rocha JB, Schetinger MR, Neto JR, Morsch VM, Loro VL (2007) Exposure to sublethal concentrations of Zn (II) and Cu (II) changes biochemical parameters in Leporinus obtusidens. Chemosphere 69:170–175

    Article  CAS  PubMed  Google Scholar 

  • Grosell M, Wood CM, Walsh PJ (2003) Copper homeostasis and toxicity in the elasmobranch Raja erinacea and the teleost Myoxocephalus octodecemspinosus during exposure to elevated waterborne copper. Comp Biochem Physiol C 135:179–190

    Google Scholar 

  • Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Heath AG (1987) Water pollution and fish physiology. CRC Press, Florida, p 245

    Google Scholar 

  • Hermes-Lima M (2004) Principles of metabolic control. In: Storey K (ed) Functional metabolism: regulation and adaptation. Wiley

  • Hershfinkel M, Silverman WF, Sekler I (2007) The zinc sensing receptor, a link between zinc and cell signaling. Mol Med 13:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EP (1997) Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci USA 94:13386–13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetto MG, Caricato R, Giordano ME, Pascariello MF, Marinosci L, Schettino T (2003) Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull 46:324–330

    Article  CAS  PubMed  Google Scholar 

  • Loro VL, Jorge MB, Silva KR, Wood CM (2012) Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 110–111:187–193

    Article  PubMed  Google Scholar 

  • Loro VL, Nogueira L, Nadella SR, Wood CM (2014) Zinc bioaccumulation and ionoregulatory impacts in Fundulus heteroclitus exposed to sublethal waterborne zinc at different salinities. Comp Biochem Physiol Part C 166:96–104

    CAS  Google Scholar 

  • Lushchak V (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500s–1508s

    CAS  PubMed  Google Scholar 

  • Martínez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88

    Article  Google Scholar 

  • McGeer JC, Szebedinszky C, McDonald DG, Wood CM (2000) Effect of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout 1: ionoregulatory disturbance and metabolic costs. Aquat Toxicol 50(3):231–243

    Article  CAS  PubMed  Google Scholar 

  • Meyer JN, Smith JD, Winston GW, Di Giulio RT (2003) Antioxidant defenses in killifish (Fundulus heteroclitus) exposed to contaminated sediments and model pro-oxidants: short-term and heritable responses. Aquat Toxicol 65:377–395

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Nelson DP, Kiesow LA (1972) Enthalphy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Anal Biochem 49:474–478

    Article  CAS  PubMed  Google Scholar 

  • Oteiza PI, Mackenzie GG (2005) Zinc, oxidant-triggered cell signaling, and human health. Mol Aspects Med 26:245–255

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Parvez S, Ansari RA, Ali M, Kaur M, Hayat F, Ahmad F, Raisuddin S (2008) Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem Biol Interact 174:183–192

    Article  CAS  PubMed  Google Scholar 

  • Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E, Rosi G (2003) Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 145:321–329

    Article  CAS  PubMed  Google Scholar 

  • Santos DCM, Matta SLP, Oliveira JA, Santos JAD (2012) Histological alterations in gills of Astyanax aff. bimaculatus caused by acute exposition to zinc. Exp Toxicol Pathol 64:861–866

    Article  PubMed  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116–117:90–101

    Article  PubMed  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29(12):1715–1733

    CAS  PubMed  Google Scholar 

  • Tamir HA, Sharir H, Schwartz B, Hershfinkel M (2004) Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 279:51804–51816

    Article  Google Scholar 

  • Vallee BL (1988) Zinc: biochemistry, physiology, toxicology and clinical pathology. BioFactors 1:31–36

    CAS  PubMed  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417

    CAS  PubMed  Google Scholar 

  • Winston GW (1991) Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol C 100:173–176

    Article  CAS  PubMed  Google Scholar 

  • Xu YJ, Liu XZ, Ma AJ (2004) Current research on toxicity effect and molecular mechanism of heavy metals on fish. Mar Sci 28:67–70

    CAS  Google Scholar 

  • Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228:349–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Federal University of Santa Maria (UFSM) for the support and facilities and the financial support and fellowships from the Brazilian agencies CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania Lucia Loro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitemperger, J., Menezes, C., Santi, A. et al. Early biochemical biomarkers for zinc in silver catfish (Rhamdia quelen) after acute exposure. Fish Physiol Biochem 42, 1005–1014 (2016). https://doi.org/10.1007/s10695-015-0192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0192-0

Keywords

Navigation