Skip to main content
Log in

Hematological and Biochemical Changes in the Neotropical Fish Astyanax altiparanae after Acute Exposure to a Cadmium and Nickel Mixture

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ni and Cd are widely used together in the manufacture of cells and batteries. The incorrect disposal of these products can result in environmental contamination, posing risks to the organisms exposed to these contaminants. However, the effects of the mixture of Ni and Cd in freshwater fishes are still unclear in the current literature, especially in relation to biomarkers of oxidative stress. Thus, the objective of the current work was to compare the sublethal effects caused by the mixture of cadmium (Cd) and nickel (Ni) with the effects of these metals individually, in the fish Astyanax altiparanae. The animals were exposed for 72 h to 20 μg L-1 of Cd, 1.5 mg L-1 of Ni, or a mixture of these two metals at the concentrations mentioned. After exposure, tissue samples were collected to evaluate hematological and plasma parameters, biomarkers of oxidative stress in the gills, and acetylcholinesterase (AChE) activity in brain and muscle. Exposure to the mixture caused alterations that were not observed in the groups exposed to the metals individually, such as increased activity of catalase and glutathione-S-transferase, and a reduction in AChE activity in the brain. Thus, we concluded that exposure to the mixture of Cd and Ni is more harmful to A. altiparanae than exposure to these metals separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdalla, R. P., Kida, B. M. S., Pinheiro, J. P. S., Oliveira, L. F., Martinez, C. B. F., & Moreira, R. G. (2019). Exposure to aluminum, aluminum+manganese and acid pH triggers different antioxidant responses in gills and liver of Astyanax altiparanae (Teleostei: Characiformes: Characidae) males. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 215, 33–40. https://doi.org/10.1016/j.cbpc.2018.09.004

    Article  CAS  Google Scholar 

  • Amiard-Triquet, C., Amiard, J., & Mouneyrac, C. (2015). Aquatic ecotoxicology: advancing tools for dealing with emerging risks (p. 503). Academic Press.

    Google Scholar 

  • Araújo, M. C., Assis, C. R. D., Silva, K. C. C., Souza, K. S., Azevedo, R. S., Alves, M. H. M. E., Silva, L. C., Silva, V. L., Adam, M. L., Carvalho Junior, L. B., Bezerra, R. S., & Oliveira, M. B. M. (2018). Characterization of brain acetylcholinesterase of bentonic fish Hoplosternum littorale: Perspectives of application in pesticides and metal ions biomonitoring. Aquatic Toxicology, 205, 213–226. https://doi.org/10.1016/j.aquatox.2018.10.017

    Article  CAS  Google Scholar 

  • Beutler, E. (1975). Red Cell Metabolism: A manual of biochemical methods (2nd ed.). Grune & Straton.

    Google Scholar 

  • Beutler, E., Durom, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–890.

    CAS  Google Scholar 

  • Bezerra, V., Risso, W. E., Martinez, C. B. R., & Simonato, J. D. (2022). Can Lemna minor mitigate the effects of cadmium and nickel exposure in a Neotropical fish? Environmental Toxicology and Pharmacology, 92, 103862. https://doi.org/10.1016/j.etap.2022.103862

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brasil. (2005). Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente. Resolução CONAMA n° 357, de 17 de março de 2005. Diário Oficial da União, Brasília, (053), 58–63.

  • Camejo, G., Wallin, B., & Enojärvi, M. (1998). Analysis of oxidation and antioxidants using microtiter plates. In D. Armstrong (Ed.), Free radical and antioxidant protocols (Vol. 108, pp. 377–387). Humana Press.

    Chapter  Google Scholar 

  • Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  • Carriquiriborde, P. (2021). Bases sobre los efectos tóxicos inducidos por los contaminantes. In P. Carriquiriborde (Ed.), Principios de Ecotoxicología (pp. 94–115). Libros de Cátedra, Editorial de la Universidad Nacional de La Plata (EDULP) http://sedici.unlp.edu.ar/handle/10915/118183

    Google Scholar 

  • Conte, A. A. (2016). Reverse logistic, recycling and eco-efficiency of the batteries: review. Brazilian Journal of Environmental Sciences (Online), 39, 124–139. https://doi.org/10.5327/Z2176-947820167114

    Article  Google Scholar 

  • Costa, J. R. M. A., Mela, M., de Assis, H. C. D. S., Pelletier, É., Randi, M. A. F., & de Oliveira Ribeiro, C. A. (2007). Enzymatic inhibition and morphological changes in Hoplias malabaricus from dietary exposure to lead (II) or methylmercury. Ecotoxicology and Environmental Safety, 67(1), 82–88. https://doi.org/10.1016/j.ecoenv.2006.03.013

    Article  CAS  Google Scholar 

  • Couture, P., & Pyle, G. (2012). Field studies on metal accumulation and effects in fish. In C. M. Wood, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology, v 31 A, Homeostasis and Toxicology of Essential Metals (pp. 417–473). Academic Press. https://doi.org/10.1016/S1546-5098(11)31009-6

    Chapter  Google Scholar 

  • Dew, W. A., Veldhoen, N., Carew, A. C., Helbing, C. C., & Pyle, G. G. (2016). Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures. Aquatic Toxicology, 172, 86–94. https://doi.org/10.1016/j.aquatox.2015.12.018

    Article  CAS  Google Scholar 

  • Dourado, P. L. R., Rocha, M. P. D., Roveda, L. M., Raposo, J. L., Cândido, L. S., Cardoso, C. A. L., Morales, M. A. M., Oliveira, K. M. P., & Grisolia, A. B. (2016). Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays. Genetics and Molecular Biology, 40, 123–133. https://doi.org/10.1590/1678-4685-GMB-2015-0223

    Article  Google Scholar 

  • Ellman, G. L., Coutney, K. O., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemistry Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Gagné, F. (2014). Xenobiotic Biotransformation. In F. Gagné (Ed.), Biochemical Ecotoxicology - Principles and Methods (pp. 117–130). Academic Press.

    Chapter  Google Scholar 

  • Kim, J. H., Choi, H., Sung, G., Seo, S. A., Kim, K. I., Kang, Y. J., & Kang, J. C. (2019). Toxic effects on hematological parameters and oxidative stress in juvenile olive flounder, Paralichthys olivaceus exposed to waterborne zinc. Aquaculture Reports, 15, 100225. https://doi.org/10.1016/j.aqrep.2019.100225

    Article  Google Scholar 

  • Komjarova, I., & Blust, R. (2009). Multimetal interactions between Cd, Cu, Ni, Pb, and Zn uptake from water in the zebrafish Danio rerio. Environmental Science & Technology, 43(19), 7225–7229. https://doi.org/10.1021/es900587r

    Article  CAS  Google Scholar 

  • Lee, D. C., Choi, Y. J., & Kim, J. H. (2022). Toxic effects of waterborne cadmium exposure on hematological parameters, oxidative stress, neurotoxicity, and heat shock protein 70 in juvenile olive flounder, Paralichthys olivaceus. Fish & Shellfish Immunology, 122, 476–483. https://doi.org/10.1016/j.fsi.2022.02.022

    Article  CAS  Google Scholar 

  • Lima, F. C. T., Malabarba, L. R., Buckup, P. A., da Silva, J. F. P., Vari, R. P., Harold, A., Benine, R., Oyakawa, O. T., Pavanelli, C. S., Menezes, N. A., Lucena, C. A. S., Malabarba, M. C. S. L., Lucena, Z. M. S., Reis, R. E., Langeani, F., Cassati, L., Bertaco, V. A., Moreira, C., & Lucinda, P. H. F. (2003). Genera Incertae Sedis in Characidae. In R. E. Reis, S. O. Kullander, & C. J. Ferraris Júnior (Eds.), Checklist of the Freshwater Fishes of South and Central America (pp. 106–168). EDIPUCRS.

    Google Scholar 

  • Lushchak, V. I. (2016). Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711–747. https://doi.org/10.1007/s10695-015-0171-5

    Article  CAS  Google Scholar 

  • Martin, O., Scholze, M., Ermler, S., McPhie, J., Bopp, S. K., Kienzler, A., Parissisb, N., & Kortenkamp, A. (2021). Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environment International, 146, 106206. https://doi.org/10.1016/j.envint.2020.106206

    Article  CAS  Google Scholar 

  • McRae, N. K., Gaw, S., Brooks, B. W., & Glover, C. N. (2019). Oxidative stress in the galaxiid fish, Galaxias maculatus, exposed to binary waterborne mixtures of the pro-oxidant cadmium and the anti-oxidant diclofenac. Environmental Pollution, 247, 638–646. https://doi.org/10.1016/j.envpol.2019.01.073

    Article  CAS  Google Scholar 

  • Melo, W. A., Braga, C. A. D. S. B., & Carneiro, L. C. (2017). Occurrence of heavy metals and contaminants on the surface of adjacent rivers. Journal of Water and Health, 15(1), 50–57. https://doi.org/10.2166/wh.2016.135

    Article  Google Scholar 

  • Monserrat, J. M. (2021). Estrés Oxidativo. In P. Carriquiriborde (Ed.), Principios de Ecotoxicología (pp. 116–125). Libros de Cátedra, Editorial de la Universidad Nacional de La Plata (EDULP) http://sedici.unlp.edu.ar/handle/10915/118183

    Google Scholar 

  • Naïja, A., Kestemont, P., Chénais, B., Haouas, Z., Blust, R., Helal, A. N., & Marchand, J. (2017). Cadmium exposure exerts neurotoxic effects in peacock blennies Salaria pavo. Ecotoxicology and Environmental Safety, 143, 217–227. https://doi.org/10.1016/j.ecoenv.2017.05.041

    Article  CAS  Google Scholar 

  • Naik, A. P., Shyama, S. K., & D'Costa, A. H. (2020). Evaluation of genotoxicity, enzymatic alterations and cadmium accumulation in Mozambique tilapia Oreochromis mossambicus exposed to sub lethal concentrations of cadmium chloride. Environmental Chemistry and Ecotoxicology, 2, 126–131. https://doi.org/10.1016/j.enceco.2020.07.006

    Article  Google Scholar 

  • Nikinmaa, M. (2014). An introduction to aquatic toxicology (p. 240). Academic Press.

    Google Scholar 

  • Niyogi, S., Nadella, S. R., & Wood, C. M. (2015). Interactive effects of waterborne metals in binary mixtures on short-term gill–metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 165, 109–119. https://doi.org/10.1016/j.aquatox.2015.05.016

    Article  CAS  Google Scholar 

  • Oliveira, L. F., Santos, C., Risso, W. E., & Martinez, C. B. R. (2018). Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater Neotropical fish. Environmental Toxicology and Chemistry, 37(6), 1749–1756. https://doi.org/10.1002/etc.4133

    Article  CAS  Google Scholar 

  • Ornelas-García, C. P., Domínguez-Domínguez, O., & Doadrio, I. (2008). Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evolutionary Biology, 8(1), 1–17. https://doi.org/10.1186/1471-2148-8-340

    Article  CAS  Google Scholar 

  • Palermo, F. F., Risso, W. E., Simonato, J. D., & Martinez, C. B. R. (2015). Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical fish Prochilodus lineatus. Ecotoxicology and Environmental Safety, 116, 19–28. https://doi.org/10.1016/j.ecoenv.2015.02.032

    Article  CAS  Google Scholar 

  • Pan, H., Zhang, X., Ren, B., Yang, H., Ren, Z., & Wang, W. (2017). Toxic assessment of cadmium based on online swimming behavior and the continuous AChE activity in the gill of zebrafish (Danio rerio). Water, Air, & Soil Pollution, 228(9), 1–9. https://doi.org/10.1007/s11270-017-3540-0

    Article  CAS  Google Scholar 

  • Pereira, B. V., Silva-Zacarin, E. C., Costa, M. J., Dos Santos, A. C. A., do Carmo, J. B., & Nunes, B. (2019). Cholinesterases characterization of three tropical fish species, and their sensitivity towards specific contaminants. Ecotoxicology and Environmental Safety, 173, 482–493. https://doi.org/10.1016/j.ecoenv.2019.01.105

    Article  CAS  Google Scholar 

  • Pereira, L. S., Ribas, J. L. C., Vicari, T., Silva, S. B., Stival, J., Baldan, A. P., Valdez Domingos, F. X., Grassi, M. T., Cestari, M. M., & Silva de Assis, H. C. (2016). Effects of ecologically relevant concentrations of cadmium in a freshwater fish. Ecotoxicology and Environmental Safety, 130, 29–36. https://doi.org/10.1016/j.ecoenv.2016.03.046

    Article  CAS  Google Scholar 

  • Pillet, M., Castaldo, G., De Weggheleire, S., Bervoets, L., Blust, R., & De Boeck, G. (2019). Limited oxidative stress in common carp (Cyprinus carpio, L., 1758) exposed to a sublethal tertiary (Cu, Cd and Zn) metal mixture. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 218, 70–80. https://doi.org/10.1016/j.cbpc.2019.01.003

    Article  CAS  Google Scholar 

  • Prado, P. S., Souza, C. C., Bazzoli, N., & Rizzo, E. (2011). Reproductive disruption in lambari Astyanax fasciatus from a Southeastern Brazilian reservoir. Ecotoxicology and Environmental Safety, 74(7), 1879–1887. https://doi.org/10.1016/j.ecoenv.2011.07.017

    Article  CAS  Google Scholar 

  • Pretto, A., Loro, V. L., Morsch, V. M., Moraes, B. S., Menezes, C., Clasen, B., Hoehne, L., & Dressler, V. (2010). Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Archives of Environmental Contamination and Toxicology, 58(4), 1008–1014. https://doi.org/10.1007/s00244-009-9419-3

    Article  CAS  Google Scholar 

  • Rahman, M., Rima, S. A., Saha, S. K., Saima, J., Hossain, M. S., Tanni, T. N., Bakar, M. A., & Siddique, M. A. M. (2022). Pollution evaluation and health risk assessment of heavy metals in the surface water of a remote island Nijhum Dweep, northern Bay of Bengal. Environmental Nanotechnology, Monitoring & Management, 18, 100706. https://doi.org/10.1016/j.enmm.2022.100706

    Article  CAS  Google Scholar 

  • Rimoldi, F. (2021). Efectos de los contaminantes sobre poblaciones. In P. Carriquiriborde (Ed.), Principios de Ecotoxicología (pp. 209–231). Libros de Cátedra, Editorial de la Universidad Nacional de La Plata (EDULP) http://sedici.unlp.edu.ar/handle/10915/118183

    Google Scholar 

  • Santos Carvalho, C., Bernusso, V. A., & Fernandes, M. N. (2015). Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus). Aquatic Toxicology, 167, 220–227. https://doi.org/10.1016/j.aquatox.2015.08.003

    Article  CAS  Google Scholar 

  • Santos, D. C. M., da Matta, S. L. P., de Oliveira, J. A., & dos Santos, J. A. D. (2012). Histological alterations in gills of Astyanax aff. bimaculatus caused by acute exposition to zinc. Experimental and Toxicologic Pathology, 64(7–8), 861–866. https://doi.org/10.1016/j.etp.2011.03.007

    Article  CAS  Google Scholar 

  • Shahjahan, M., Islam, M. J., Hossain, M. T., Mishu, M. A., Hasan, J., & Brown, C. (2022). Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of the Total Environment, 843, 156910. https://doi.org/10.1016/j.scitotenv.2022.156910

    Article  CAS  Google Scholar 

  • Silva, A. O., & Martinez, C. B. R. (2014). Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: Enzymes activity and plasma ions. Aquatic Toxicology, 156, 161–168. https://doi.org/10.1016/j.aquatox.2014.08.009

    Article  CAS  Google Scholar 

  • Simonato, J. D., Mela, M., Doria, H. B., Guiloski, I. C., Randi, M. A., Carvalho, P. S. M., Meletti, P. C., Assis, H. C. S., Bianchini, A., & Martinez, C. B. R. (2016). Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus. Aquatic Toxicology, 170, 31–41. https://doi.org/10.1016/j.aquatox.2015.11.012

    Article  CAS  Google Scholar 

  • Tegu, T. B., Ekemube, R. A., Ebenezer, S. O., & Atta, A. T. (2023). Monitoring the Variability of the Pollutants Level in Urban Water Front during Dry and Wet Seasons. European Journal of Applied Sciences, 11(1). https://doi.org/10.14738/aivp.111.13747

  • Tincani, F. H., Santos, G. S., & Azevedo, A. C. B. (2019). Climbing the taxonomic ladder: Could a genus be used as bioindicator? The ecotoxicological relationship between biomarkers of Astyanax altiparanae, Astyanax bifasciatus and Astyanax ribeirae. Ecological Indicators, 106, 105474. https://doi.org/10.1016/j.ecolind.2019.105474

    Article  CAS  Google Scholar 

  • Topal, A., Atamanalp, M., Oruç, E., & Erol, H. S. (2017). Physiological and biochemical effects of nickel on rainbow trout (Oncorhynchus mykiss) tissues: assessment of nuclear factor kappa B activation, oxidative stress and histopathological changes. Chemosphere, 166, 445–452. https://doi.org/10.1016/j.chemosphere.2016.09.106

    Article  CAS  Google Scholar 

  • Topal, A., Atamanalp, M., Oruç, E., Halıcı, M. B., Şişecioğlu, M., Erol, H. S., Gergit, A., & Yılmaz, B. (2015). Neurotoxic effects of nickel chloride in the rainbow trout brain: assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes. Fish Physiology and Biochemistry, 41(3), 625–634. https://doi.org/10.1007/s10695-015-0033-1

    Article  CAS  Google Scholar 

  • Viana, L. F., Súarez, Y. R., Cardoso, C. A. L., Crispim, B. D. A., Cavalcante, D. N. D. C., Grisolia, A. B., & Lima-Junior, S. E. (2018). The response of neotropical fish species (Brazil) on the water pollution: metal bioaccumulation and genotoxicity. Archives of Environmental Contamination and Toxicology, 75, 476–485. https://doi.org/10.1007/s00244-018-0551-9

    Article  CAS  Google Scholar 

  • Viarengo, A., Ponzano, E., Dondero, F., & Fabbri, R. (1997). A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Meditarranean and Antartic mollusks. Marine Environmental Research, 44, 69–84. https://doi.org/10.1016/S0141-1136(96)00103-1

    Article  CAS  Google Scholar 

  • Vicari, T., Dagostim, A. C., Klingelfus, T., Galvan, G. L., Monteiro, P. S., da Silva Pereira, L., Assis, H. C. S., & Cestari, M. M. (2018). Co-exposure to titanium dioxide nanoparticles (NpTiO2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicology Reports, 5, 1032–1043. https://doi.org/10.1016/j.toxrep.2018.09.001

    Article  CAS  Google Scholar 

  • Wang, Z., Hua, P., Zhang, J., & Krebs, P. (2023). Bayesian-Based Approaches to Exploring the Long-Term Alteration in Trace Metals of Surface Water and Its Driving Forces. Environmental Science & Technology, 57, 1658–1669. https://doi.org/10.1021/acs.est.2c07210

    Article  CAS  Google Scholar 

  • Witeska, M. (2015). Anemia in teleost fishes. Bulletin of the European Association of Fish Pathologists, 35(4), 148–160.

    Google Scholar 

  • Wood, C. M. (2012). An introduction to metals in fish physiology and toxicology: basic principles. In C. M. Wood, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology, v 31 A, Homeostasis and Toxicology of Essential Metals (pp. 1–51). Academic Press. https://doi.org/10.1016/S1546-5098(11)31001-1

    Chapter  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

D G.M.C.: Project administration, investigation, formal analysis, writing - original draft, and writing - review & editing. B V.: Investigation, formal analysis, writing - review & editing, and visualization. R W.E.: Investigation and writing - review & editing. M C.B.R.: Resources and writing - review & editing. S J.D.: Supervision, conceptualization, project administration, resources, and writing - review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliana Delatim Simonato.

Ethics declarations

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval

All procedures performed were approved by the Ethics Committee on Animal Experimentation at the State University of Londrina, Brazil (protocol number: 13642.2019.46).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, G.M.C., Bezerra, V., Risso, W.E. et al. Hematological and Biochemical Changes in the Neotropical Fish Astyanax altiparanae after Acute Exposure to a Cadmium and Nickel Mixture. Water Air Soil Pollut 234, 307 (2023). https://doi.org/10.1007/s11270-023-06325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06325-5

Keywords

Navigation