Skip to main content
Log in

SARIM PLUS—sample return of comet 67P/CG and of interstellar matter

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altobelli, N., et al.: Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. 108(A10), 8032 (2003)

    Article  Google Scholar 

  2. Altobelli, N., et al.: A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth orbit. Astron. Astrophys. 448, 243–252 (2006)

    ADS  Google Scholar 

  3. Altobelli, N., et al.: Interstellar dust flux measurements by the Galileo dust instrument between the orbit of Venus and Mars. J. Geophys. Res. 110, 7102 (2005)

    Article  Google Scholar 

  4. Baggaley, W.J.: Advanced meteor orbit radar observations of interstellar meteoroids. J. Geophys. Res. Space Phys. 105(A5), 10353–10361 (2000)

    Article  ADS  Google Scholar 

  5. Brownlee, D.E., et al.: Stardust: comet and interstellar dust sample return mission. J. Geophys. Res. 108(E10), SRD 1–1 (2003)

    Article  Google Scholar 

  6. Brownlee, D.E.: 164 co-authors: Comet Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    Article  ADS  Google Scholar 

  7. Burchell, M.J., et al.: Cosmic dust collection in aerogel. Ann. Rev. Earth Planet. Sci. 34, 385–418 (2006)

    Article  ADS  Google Scholar 

  8. Carpenter, J.D., et al.: Dust detection in the ISS environment using filmed microchannel plates. J. Geophys. Res. 110, E05013 (2005)

    Article  ADS  Google Scholar 

  9. Carpenter, J.D., Stevenson, T.J., Fraser, G.W., Bridges, J.C., Kearsley, A.T., Chater R.J., Hainsworth, S.V.: Nanometer hypervelocity dust impacts in low Earth orbit. J. Geophys. Res. 112, E08008 (2007). doi:10.1029/2007JE002923

    Article  ADS  Google Scholar 

  10. Colangeli, L., et al.: Preface to the special section: space simulations in laboratory: experiments, instrumentation, and modeling. J. Geophys. Res. 109(E07S01), 1–2 (2004). doi:10.1029/2004JE002292

    Google Scholar 

  11. Colangeli, L., et al.: The new Rosetta targets—observation, simulations and instrument performances. Astrophys Space Sci. Library 311, 271–280 (2004)

    ADS  Google Scholar 

  12. Colangeli, L., et al.: GIADA: the grain impact analyser and dust accumulator for the Rosetta space mission. Adv. Space Res. 39(3), 446–450 (2007)

    Article  Google Scholar 

  13. Colangeli, L., et al.: The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: design, performances and first results. Space Sci. Rev. 128, 803–821 (2007)

    Article  ADS  Google Scholar 

  14. Esposito, F., et al.: Physical aspect of an “impact sensor” for the detection of cometary dust momentum onboard the “Rosetta” space mission. Adv. Space Res. 29, 1159–1163 (2002)

    Article  ADS  Google Scholar 

  15. Gardner, D.J., et al.: Hole growth characterisation for hypervelocity impacts in thin targets. Int. J. Impact Eng. 19(7), 589–602 (1997)

    Article  ADS  Google Scholar 

  16. Graham, G.A., et al.: Observations on hypervelocity impact damage sustained by multi-layered insulation foils exposed in low earth orbit and simulated in the laboratory. Int. J. Impact Eng. 29, 307–316 (2003)

    Article  Google Scholar 

  17. Grün, E., Gustfason, B., Mann, I., Baguhl, M., Morfill, G.E., Staubach, P., Taylor, A., Zook, H.A.: Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994)

    ADS  Google Scholar 

  18. Grün, E., et al.: DuneXpress. Exp. Astron. 23(3), 981 (2009). doi:10.1007/s10686-008-9099-4

    Article  ADS  Google Scholar 

  19. Hoppe, P., et al.: SIMS studies of Allende projectiles fired into Stardust-type aluminium foils at 6 km/sec. Meteorit. Planet. Sci. 41.2, 197–209 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Hoppe, P.: Origin and early evolution of comet nuclei. Space Sci. Series ISSI 28, 43–57 (2009)

    Article  Google Scholar 

  21. Hörz, F., et al.: Impact features on Stardust and Comet Wild 2 Dust. Science 314, 1716–1719 (2006)

    Article  ADS  Google Scholar 

  22. Hu, Q., et al.: The Orbitrap: a new mass spectrometer. J. Mass Spectr. 40, 430–443 (2005)

    Article  Google Scholar 

  23. Kearsley, A.T., Graham, G.A.: Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit. Adv. Space Res. 34, 939–943 (2004)

    Article  ADS  Google Scholar 

  24. Kearsley, A.T., et al.: Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles. Adv. Space Res. 35, 1254–1262 (2005)

    Article  ADS  Google Scholar 

  25. Kearsley, A.T., et al.: Sampling the orbital debris population using a foil residue collector in a Standardised Container For Experiments (SCE). In: Danesy, D. (ed.) Proceedings of the 4th European Conference on Space Debris, ESA Special Publication 587. The European Space Agency, Darmstadt, Germany, pp. 215–220 (2005)

    Google Scholar 

  26. Kearsley, A.T., et al.: MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris. Adv. Space Res. 35, 1270–1281 (2005)

    Article  ADS  Google Scholar 

  27. Kearsley, A.T., et al.: Analytical scanning and transmission electron microscopy of laboratory impacts on Stardust aluminum foils: interpreting impact crater morphology and the composition of impact residues. Meteorit. Planet. Sci. 42.2, 191–210 (2007)

    Article  ADS  Google Scholar 

  28. Kearsley, A.T., et al.: Dust from comet Wild 2: interpreting particle size, shape, structure and composition from impact features on the Stardust aluminum foils. Meteorit. Planet. Sci. (2007, submitted)

  29. Kempf, S., et al.: Cassini between Earth and asteroid belt: discovery of charged interplanetary dust grains. Icarus 171(2), 317–335 (2004)

    Article  ADS  Google Scholar 

  30. Krueger, F.R., Werther, W., Kissel, J., Schmid, E.R.: Assignment of quinone derivates as the main compound class composing interstellar grains based on both polarity ions detected by the Cometary and Interstellar Dust Analyser (CIDA) onboard the spacecraft STARDUST. Rap. Comm. Mass Spec. 18, 103–111 (2004)

    Article  Google Scholar 

  31. Kuan Y.-J., et al.: A search for interstellar pyrimidine. Monthly Notices of the Royal Astronomical Society 345(10), 650–656 (2003)

    Article  ADS  Google Scholar 

  32. Landgraf, M., et al.: Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105, 10343 (2000)

    Article  ADS  Google Scholar 

  33. McDonnell, J.A.M., et al.: Near Earth environment. In: Grun, E. (ed.) Interplanetary Dust, pp. 163–261. Springer, London and Berlin (2001)

    Chapter  Google Scholar 

  34. McKeegan, K.D., et al.: Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006)

    Article  ADS  Google Scholar 

  35. Mumma, M.J.: Organic volatiles in comets: their relation to interstellar ices and solar nebula material, from stardust to planetesimals. Symposium held as part of the 108th Annual meeting of the ASP held at Santa Clara, California 24–26 June 1996. ASP Conference Series, vol. 122, pp. 369 (1997)

  36. Nesvorny, D., Jenniskens, P., Levison, H.F., Bottke, W.F., Vokrouhlický, D., Gounelle, M.: Cometary origin of the zodiacal cloud and carbonaceous micrometeorites - implications for hot debris disks. Astrophys. J. 713, 816–836 (2010)

    Article  ADS  Google Scholar 

  37. Sandford, S.A., et al.: Organics captured from comet 81/PWild 2 by the Stardust spacecraft. Science 314, 1720 (2006)

    Article  ADS  Google Scholar 

  38. Slavin, J.D., Frisch, P.C.: Exclusion of tiny interstellar dust grains from the heliosphere. Astron. Astrophys. 491, 53–68 (2008)

    Article  ADS  Google Scholar 

  39. Simpson, J.A., Tuzzolino, A.J.: II.: Instruments for measurement of particle trajectory, velocity and mass. Nucl. Inst. Meths. Sect. A 279, 611–624 (1989)

    Article  ADS  Google Scholar 

  40. Srama, R., et al.: The Cassini cosmic dust analyser. Space Sci. Rev. 114, 465–518 (2004)

    Article  ADS  Google Scholar 

  41. Srama, R., et al.: Performance of an advanced dust telescope. In: Danesy D. (ed.) Proceedings of the 4th European Conference on Space Debris (ESA SP-587), p. 171. ESA/ESOC, 18–20 April 2005. Darmstadt, Germany (2005)

  42. Srama, R., et al.: Development of an advanced dust telescope. Earth Moon Planets 95(1–4), 211–220 (2005). doi:10.1007/s11038–005–9040-z

    ADS  Google Scholar 

  43. Srama, R., Kempf, S., Moragas-Klostermeyer, G., Landgraf, M., Helfert, S., Sternovsky, Z., Rachev, M., Grün, E.: Laboratory tests of the large area mass analyzer. In: Proc. of “Dust in Planetary Systems”, pp. 209–213. ESA SP-643, Kauai, Hawaii, USA (2007)

  44. Srama, R., et al.: Sample return of interstellar matter (SARIM). Exp. Astron. (2008). doi:10.1007/s10686-008-9088-7

    Google Scholar 

  45. Sterken, V.J., Altobelli, N., Kempf, S., Schwehm, G., Srama, R., Grün, E.: The flow of interstellar dust into the Solar System. Astron. Astrophys (2011, in press)

  46. Stephan, T., et al.: TOF-SIMS analysis of cometary matter in Stardust aerogel tracks. Meteorit. Planet. Sci. 43(1–2), 233–246 (2008)

    Article  ADS  Google Scholar 

  47. Sternovsky, Z., Amyx, K., Bano, G., Landgraf, M., Horanyi, M., Knappmiller, S., Robertson, S., Grün, E., Srama, R., Auer, S.: The Large Area Mass Analyzer (Lama) instrument for the chemical analysis of interstellar dust particles. Rev. Sci. Instrum. 78, 014501 (2007)

    Article  ADS  Google Scholar 

  48. Thissen, R.: person. communication (2010)

  49. Tsou, P., et al.: Wild 2 and interstellar sample collection and Earth return. J. Geophys. Res. (2003). doi:10.1029/2003JE002109

    Google Scholar 

  50. Tuzzolino, A.J., et al.: Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2. J. Geophys. Res. 108(E10), 8115 (2003). doi:10.1029/2003JE002086

    Article  Google Scholar 

  51. Westphal, A.J., Fakra, S.C., Gainsforth, Z., Marcus, M.A., Ogliore, R.C., Butterworth, A.L.: Mixing fraction of inner solar system material in comet 81P/Wild 2. Astrophys. J. 694, 1 (2009)

    Article  ADS  Google Scholar 

  52. Westphal, A., et al.: LPSC 41, 2050 (2010)

    ADS  Google Scholar 

  53. Witte, M., et al.: Astron. Astrophys. 426, 835 (2004)

    Article  ADS  Google Scholar 

  54. Zolensky, M.E., et al.: Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314(5806), 1735 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srama, R., Krüger, H., Yamaguchi, T. et al. SARIM PLUS—sample return of comet 67P/CG and of interstellar matter. Exp Astron 33, 723–751 (2012). https://doi.org/10.1007/s10686-011-9285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9285-7

Keywords

Navigation