Skip to main content

Near Earth Environment

  • Chapter
Interplanetary Dust

Abstract

Planet Earth provides an interface to the interplanetary environment; its atmosphere forms a protective shield against direct impacts and erosion and is a medium in which to observe the approach of meteoroids and even to capture intact smaller meteoroids. The Earth’s gravitational well enhances the flux of interplanetary dust and modifies its velocity distribution. We consider the effect of the Earth on the dynamical properties on the interplanetary dust population, the relative contribution of sporadic meteoroids and annual streams, the efficiency of the atmosphere in capturing and fragmenting meteoroids and the effect of space debris on in situ experimental results. We review the range of modelling tools necessary to interpret the complex interaction of these populations with spacecraft, with particular emphasis on the improved calibration of impact detectors and the application of software models. Analysis of the available data from 30 years of in situ impact experiments, and more recent recovered samples reveals evidence of the relative contributions from space debris and various astrophysical sources. While temporally and spatially averaged fluxes are well represented by existing isotropic interplanetary models for meteoroids responsible for penetrating experimental foils (of thickness F max) greater than approximately 30 μm, at smaller sizes a high degree of anisotropy is apparent in resolved data. An Earth apex component is observed for particles larger than a few microns in size whereas at smaller sizes, β-meteoroids from the solar direction dominate. Space debris forms an increasingly significant proportion of the LEO population at F max < 30 μm in addition to its dominance in the centimetre size range and above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, pp. 1095–1108.

    Article  ADS  Google Scholar 

  • Anderson, B. J., and Smith, R. E. 1994. Natural orbital environment guidelines for use in aerospace vehicle development. NASA TM-4527.

    Google Scholar 

  • Anderson, C. E. Jnr. 1987. An overview of the theory of hydrocodes. Int. J. Impact Engng., 5, pp. 33–59.

    Article  Google Scholar 

  • Baldwin, B., and Sheaffer, Y., 1971. Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res., 76, pp. 4653–4668.

    Article  ADS  Google Scholar 

  • Babadzhanov, P. B., 1994. Density of meteoroids and their mass influx on the Earth. In Asteroids Comets and Meteors 1993 IAU Symposium 160, eds. A. Milani, M. Di Martino and A. Cellino (Dordrecht: Kluwer), pp. 45–54.

    Google Scholar 

  • Baggaley, W. J., Bennet, R. T. G., Steel, D. J. and Taylor, A. D. 1994. The advanced meteor orbit radar facility: AMOR. Q. J. R. Astr. Soc., 35, pp. 283–320.

    ADS  Google Scholar 

  • Bandermann, L. W., and Singer, S. F. 1969. Interplanetary dust measurements near Earth. Rev. Geophys., 7, pp. 759–797.

    Article  ADS  Google Scholar 

  • Beech, M., and Brown, P. 1994. Space platform impact probabilities—the threat from the Leonids. ESA J., 18, pp. 63–73.

    ADS  Google Scholar 

  • Beech, M., Brown, P., and Jones, J. 1995. The potential danger to space platforms from meteor storm activity. Q. J. R. Astr. Soc., 36, pp. 127–152.

    ADS  Google Scholar 

  • Berg, O. E., and Gerloff, U. 1971. More than two years of micrometeorite data from two Pioneer satellites. Space Res., 11, pp. 225–235.

    Google Scholar 

  • Berg, O. E., and Grün, E. 1973. Evidence of hyperbolic cosmic dust particles. Space Res., 13, pp. 1047–1055.

    Google Scholar 

  • Bernhard, R. P., Hörz, F., Zolensky, M. E., See, T. H., and Barrett, R. A. 1993. Composition and frequency of impact residues detected on LDEF surfaces. In First European Conference on Space Debris, ed. W. Flury, ESA SD-01, pp. 189–194.

    Google Scholar 

  • Binzel, R. P. and Xu, S. 1993. Chips off Vesta and a near resonance source for achondritic meteorites. Science, 260, pp. 186–191.

    Article  ADS  Google Scholar 

  • Bradley, J. P. 1988. Analysis of chondritic interplanetary dust thin sections. Geochim. Cosmochim. Acta, 52, pp. 889–900.

    Article  ADS  Google Scholar 

  • Bronshten, V. A. 1983. Physics of meteoric phenomena. (Dordrecht: Reidel).

    Book  Google Scholar 

  • Carey, W. C., McDonnell, J. A. M., and Dixon, D. G. 1985. Capture cells: decoding the impacting particle parameters. In Proc. XVIth Lunar and Planetary Science Conference (Abstracts volume), (LPSI Houston), pp. 111–112.

    Google Scholar 

  • Caswell, R. D., McBride N., and Taylor, A. D. 1995. Olympus end of life anomaly—a Perseid meteoroid impact event? Int. J. Impact Engng, 17, pp. 139–150.

    Article  ADS  Google Scholar 

  • Chamberlain, S. A., and Slauenwhite, T. A. 1993. United States Space Command Space Surveillance Network overview. In Proc. First European Conference on Space Debris, ed. W. Flury, ESA SD-01, pp. 37–42.

    Google Scholar 

  • Ceplecha Z., J. Borovicka, W. G. Elford, D. O. ReVelle, R. L. Hawkes, V. Porubcan, and M. Simek 1998. Meteor Phenomena and Bodies. Space Science Reviews, 84, (3/4) pp. 327–471.

    Article  ADS  Google Scholar 

  • Clarke, L. G., Kinard, D. J., Carter, D. J., and Jones, J. L. (eds.) 1984. LDEF Mission 1 Experiments, NASA SP-473.

    Google Scholar 

  • Clifton, S., and Naumann, R. 1966. Pegasus satellite measurements of meteoroid penetration (February 16-December 31, 1965). NASA TM X-1316.

    Google Scholar 

  • Collier, I. 1995. Hypervelocity impact and perforation: a first examination of EuReCa TICCE. M. Sc. Thesis (University of Kent at Canterbury).

    Google Scholar 

  • Cook, A. F. 1972. A working list of meteor streams. In Meteor research program, NASA CR-2109, pp. 153–166.

    Google Scholar 

  • Cooke, W. J., Mulholland, J. D., and Oliver, J. P. 1993. IDE constraints on the beta meteoroid population. Adv. Space Res., 13, pp. 119–122.

    Article  ADS  Google Scholar 

  • Cooke, W. J., Oliver, J. P., and Simon, C. G. 1995. The orbital characteristics of debris particle rings as derived from IDE observations of multiple orbit intersections with LDEF. In LDEF-69 months in space: third post-retrieval symposium, ed. A. S. Levine, NASA CP 3275 Part 1, pp. 361–37l.

    Google Scholar 

  • Cour-Palais, B. G. 1969. The meteoroid environment model - 1969 (Near Earth to lunar surface). NASA SP-8013.

    Google Scholar 

  • Cour-Palais, B. G. 1979. Space vehicle meteoroid shielding design. In Proc. comet Halley micrometeoroid hazard workshop, ESA SP-153, pp. 85–92.

    Google Scholar 

  • Dennison, J. E., Kaczaral, P. W., and Lipshutz, M. E. 1987. Volatile chalcophile siderophile and lithophile trace elements in lunar meteorite Yamato-82192. Proc. Eleventh Symp. Antarctic meteorites, pp. 89–95.

    Google Scholar 

  • Dietzel, H., Eichorn, G., Fechtig, H., Grün, E., Hoffman, H.-J. and Kissel, J. 1973. The HEOS 2 and Helios micrometeoroid experiments. J. Phys. E. Sci. Instrum., 6, pp. 209–217.

    Article  ADS  Google Scholar 

  • Divine, N. 1993a. Five populations of Interplanetary Meteoroids. J. Geophys. Res., 98, pp. 17029–17048.

    Article  ADS  Google Scholar 

  • Divine, N. 1993b. Modelling the meteoroid distributions in interplanetary space and near Earth. In Proc. First European Conference on Space Debris, ed. W. Flury, ESA SD-01, pp. 245–250.

    Google Scholar 

  • Dohnanyi, J. S. 1966. Model distribution of photographic meteors. Bellcomm. Rep., TR-66-340-1 (Washington DC).

    Google Scholar 

  • Dozier, J. B. 1966. Meteoroid data recorded on Pegasus Flights. In The Micrometeoroid Satellite Project Pegasus, NASA TN D-3505, Chapter V, pp. 65–76.

    Google Scholar 

  • Drolshagen, G., Svedhem, H., Grün, E., Grafodatsky, O., Verhoturov, V., Prokopiev, U., and Gusyelnikov, V. 1997. In-situ measurement of cosmic dust and space debris in the geostationary orbit. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 129–134.

    Google Scholar 

  • Erickson, J. E. 1968. Velocity distribution of sporadic photographic meteors. J. Geophys. Res., 73, pp. 3721–3762.

    Article  ADS  Google Scholar 

  • ESA 1988. (ESA Space Debris Working Group) Space Debris. ESA SP-1109.

    Google Scholar 

  • ESA 1993. Proc. First European Conference on Space Debris, ed. W. Flury, ESA SD-01.

    Google Scholar 

  • ESA 1997. Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393.

    Google Scholar 

  • ESTEC: Mathematics & Software Division 1995. ESABASE Reference Manual, ESABASE/GEN-UM-061 Issue 2 (April 1995).

    Google Scholar 

  • Farinella, P., Froeschle, C., and Gonczi, R. 1994. Meteorite delivery and transport. In Asteroids Comets and Meteors 1993 IAU Symposium 160, eds. A. Milani, M. Di Martino and A. Cellino (Dordrecht: Kluwer), pp. 205–222.

    Google Scholar 

  • Fish, R. H., and Summers, J. L. 1965. The effect of material properties on threshold perforation. In Proceedings of the 7th Hypervelocity Impact Symposium Volume VI—Experiments (Florida: Orlando), pp. 1–26.

    Google Scholar 

  • Flury, W., Janin, G., Jehn, R., and Klinkrad, H. 1992. Space debris in elliptical orbits. In 18th international symposium on space technology and science, (Japan: Kagoshima).

    Google Scholar 

  • Flynn, G. J. 1989. Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus, 77, pp. 287–310.

    Article  ADS  Google Scholar 

  • Gardner, D. J. 1995. Hypervelocity impact morphology. Ph.D. Thesis, (University of Kent at Canterbury).

    Google Scholar 

  • Gardner, D. J., Collier, I., Shrine, N. R. G., Griffiths, A. D., and McDonnell, J. A. M. 1996. Micro-particle impact flux on the time band capture cell experiment of the EuReCa spacecraft. Adv. Space Res., 17, pp. 193–199.

    Article  ADS  Google Scholar 

  • Gardner, D. J., McDonnell, J. A. M., and Collier, I. 1997. Hole growth characterisation for hypervelocity impacts in thin targets. Int. J. Impact Engng., 19, pp. 589–602

    Article  ADS  Google Scholar 

  • Genge, M. J., Grady, M. M., and Hutchison, R. 1996. Evidence in a glassy cosmic spherule from Antarctica for grazing incidence encounters with the Earth’s atmosphere. Meteoritics and Planetary Science, 31, pp. 627–632.

    Article  ADS  Google Scholar 

  • Girard, O., and Worms, J. C. 1997. Microsatellite for orbital debris detection by lidar. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 151–153.

    Google Scholar 

  • Goldstein, R. M., and Goldstein, S. J. 1995. Flux of millimetric space debris. Astron. J., 110, pp. 1392–1396.

    Article  ADS  Google Scholar 

  • Goller, J. R., and Grün, E. 1989. Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles. Planet. Space Sci., 37, pp. 1197–1206.

    Article  ADS  Google Scholar 

  • Green, S. F., and McDonnell, J. A. M. 1992. A numerical model for the characterisation of the orbital debris environment. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: University of Kent), pp. 251–256.

    Google Scholar 

  • Green, S. F., Despande, S. P., and Mackay, N. G. 1993. A 3-D numerical model for space debris and interplanetary dust fluxes incident on LDEF. Adv. Space Res., 13, pp. 107–110.

    Article  ADS  Google Scholar 

  • Grün, E., Pailer, N., Fechtig, H., and Kissel, J. 1980. Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by Helios 1. Planet. Space Sci., 28, pp. 333–349.

    Article  ADS  Google Scholar 

  • Grün, E., and Zook, H.A. 1980. Dynamics of micrometeoroids in the inner solar system. In Solid particles in the solar system, eds I. Halliday and B. A. McIntosh (Dordrecht: Reidel), pp. 293–298.

    Google Scholar 

  • Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus, 62, pp. 244–272.

    Article  ADS  Google Scholar 

  • Grün, E., Fechtig, H., Giese, R. H., Kissel, J., Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G., and Zook, H. A. 1992. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser., 92, pp. 411–423.

    ADS  Google Scholar 

  • Grün, E., Staubach, P., Baguhl, M., Hamilton, D. P., Zook, H. A., Dermott, S., Gustafson, B. A., Fechtig, H., Kissel, J., Linkert, D., Linkert, G., Srama, R., Hanner, M. S., Polanskey, C., Horáyi, M., Lindblad, B. A., Mann, I., McDonnell, J. A. M., Morfill, G. E., and Schwehm, G. 1997. South-North and radial traverses through the interplanetary dust cloud. Icarus, 129, pp. 270–288.

    Article  ADS  Google Scholar 

  • Hastings Jnr., E. C. 1963a. The Explorer XVI micrometeoroid satellite-Description & Preliminary Results for the period Dec 16, through Jan 13, 1963. NASA TM X-810.

    Google Scholar 

  • Hastings Jnr., E. C. 1963b. The Explorer XVI micrometeoroid satellite; supplement I, preliminary results for the period 14 Jan 1963-2 Mar 1963. NASA TM X-824.

    Google Scholar 

  • Hastings Jnr., E. C. 1963c. The Explorer XVI micro meteoroid satellite; supplement II, preliminary results for the period 3 Mar 1963-26 May 1963. NASA TM X-899.

    Google Scholar 

  • Hastings Jnr., E. C. 1964. The Explorer XVI micrometeoroid satellite; supplement III, preliminary results for the period May 27 through July 22, 1963. NASA TM X-949.

    Google Scholar 

  • Hawkins, G. S., and Southworth, R. B. 1958. Statistics of meteors in the Earth’s atmosphere. Smithsonian Contrib. Astrophys., 2, pp. 349–364.

    Article  ADS  Google Scholar 

  • Hoffman, H., Fechtig, H., Grün, E., and Kissel, J. 1975a. First results of the micrometeoroid experiment S215 on the HEOS 2 satellite. Planet Space Sci., 23, pp. 215–224.

    Article  ADS  Google Scholar 

  • Hoffman, H. J., Fechtig, H., Grün, E., and Kissel, J. 1975b. Temporal fluctuations and anisotropy of the micrometeoroid flux in the Earth-Moon system measured by HEOS 2. Planet. Space Sci., 23, pp. 985–991.

    Google Scholar 

  • Hörz, F., Bernhard, R. P., Warren, J., See, T. H., Brownlee, D. E., Laurance, M. R., Messenger, S., and Peterson, R. B. 1991. Preliminary analysis of LDEF instrument A0187-1 “Chemistry of micrometeoroids experiment”. In LDEF 69 months in space—first LDEF Post-Retrieval Symposium, ed. A. S. Levine, NASA CP 3134, Part 1, pp. 487–502.

    Google Scholar 

  • Humes, D. H. 1991. Large craters on the meteoroids and space debris impact experiment. In LDEF 69 months in space-first LDEF Post-Retrieval Symposium, ed. A. S. Levine, NASA CP 3134, Part 1, pp. 399–418.

    Google Scholar 

  • Igenbergs, E., Hiidepohl, A., Uesugi, K., Hayashi, T., Svedhem, H., Iglseder, H., Koller, G., Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, K., and Nogami, K. 1991. The Munich Dust Counter-a cosmic dust experiment on board of the MUSES-A mission of Japan. In Origin and evolution of interplanetary dust, eds. Levasseur-Regourd and H. Hasegawa (Tokyo: Kluwer), pp. 45–48.

    Google Scholar 

  • Iglseder, H., Mü;nzenmayer, R., Svedhem, H., and Grün, E. 1993. Cosmic dust and space debris measurements with the Munich Dust Counter on board the satellites Hiten and Bremsat. Adv. Space Res., 13, pp. 129–132.

    Article  ADS  Google Scholar 

  • Iglseder, H., Uesugi, K., and Svedhem, H. 1996. Cosmic dust measurements in lunar orbit. Adv. Space Res., 17, pp. 177–182.

    Article  ADS  Google Scholar 

  • Jacchia, L.G., Verniani, F., and Briggs, R.E. 1967. Selected results from precision-reduced super-Schmidt meteors. In Meteor Orbits and Dust, ed. G.S. Hawkins, Smithson. Contr. Astrophys., 11, pp. 1–7.

    Article  ADS  Google Scholar 

  • Jehn, R., Vifials-Larruga, S., and Klinkrad, K. 1993. DISCOS-the european space debris database. In 44th Congress of the International Astronautical Federation, paper IAF-93-742.

    Google Scholar 

  • Jenniskens, P. 1994. Meteor stream activity. 1. The annual streams. Astron. Astrophys., 287, pp. 990–1013.

    ADS  Google Scholar 

  • Jennison, R. C., McDonnell, J. A. M., and Rodger, I. 1967. The Ariel II micrometeorite penetration measurements. Proc. Roy. Soc. A., 300, pp. 251–269.

    Article  ADS  Google Scholar 

  • Johnson, N., and Christiansen, E. 1997. NASA/JSC orbital debris models. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 225–232.

    Google Scholar 

  • Johnson, N. L., and McKnight, D. S. 1987. Artificial space debris, (Malabar, Florida, USA: Orbital Book Company).

    Google Scholar 

  • Johnson, N. L., and Nauer, D. J. 1990. History of on-orbit satellite fragmentations, 4th ed. (Teledyne-Brown Engineering), CS90-TR-JSC-002.

    Google Scholar 

  • Kessler, D. J. 1969. Average relative velocity of sporadic meteoroids in interplanetary space. AIAA, 7, pp. 2337–2338.

    Article  Google Scholar 

  • Kessler, D. J. 1972. A guide to using meteoroid-environment models for experiment and spacecraft design applications. NASA TN D-6596.

    Google Scholar 

  • Kessler, D. J. 1981. Derivation of the collision probability between orbiting objects: the lifetimes of Jupiter’s outer moons. Icarus, 48, pp. 39–48.

    Article  ADS  Google Scholar 

  • Kessler, D. J., Reynolds, R. C., and Anz-Meador, P.D. 1989. Orbital debris environment for spacecraft designed to operate in low Earth orbit. NASA TM 100471.

    Google Scholar 

  • Kessler, D. J., Zhang, J., Matney, M. J., Eichler, P., Reynolds, D. C., Anz-Meador, P. D., and Stansbery, E. G. 1996. A computer based orbital debris environment model for spacecraft design and observations in low earth orbit. NASA TM 104825.

    Google Scholar 

  • King-Hele, D. G., Walker, D. M. C., Pilkington, J. A., Winterbottom, A. N., Hiller, H., and Perry, G. E. 1990. The RAE Table of Earth Satellites 1957-1989, 4th ed. (Surrey, England: MacMillan Publishers Ltd.).

    Google Scholar 

  • Kissel, J., and Krueger, F. R. 1987. Ion formation by impact of fast dust particles and comparison with related techniques. Appl. Phys. A, 42, pp. 69–85.

    Article  ADS  Google Scholar 

  • Klinkrad, H. 1991. DISCOS—ESA’s Database and Information System Characterising Objects in Space. Adv. Space Res., 11, pp. 43–52.

    Article  ADS  Google Scholar 

  • Klinkrad, H., Tejedor, O., and Viiials, S. 1997a. The DISCOS space data publication system. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 367–373.

    Google Scholar 

  • Klinkrad, H., Bendisch, J., Sdunnus, H., Wegener, P., and Westerkamp, R. 1997b. An introduction to the 1997 ESA MASTER model. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 217–224.

    Google Scholar 

  • Kresäkova, M. 1966. The magnitude distribution of meteors in meteor streams. Contr. Astr. Obs. Skalnat’ Pleso, 3, pp. 75–109.

    ADS  Google Scholar 

  • Laul, J. C., Smith, M. R., Wanke, M., Jagontz, E., Dreibus, G., Palme, M., Spettel, B., Burghele, A., Lipschutz, M. E., and Verkouteren, R. M. 1986. Chemical systematics of the Shergotty meteorite and the composition of its parent body (Mars). Geochem. Cosmochim. Acta, 50, pp. 909–926.

    Article  ADS  Google Scholar 

  • Laurance, M. R., and Brownlee, D. E. 1986. The flux of meteoroids and orbital space debris striking satellites in low earth orbit. Nature, 323, pp. 136–138.

    Article  ADS  Google Scholar 

  • Lobb, D. R., Dick, J. S. B., and Green, S. F. 1993. Development of concepts for detection and characterisation of debris in Earth orbiting passive optical systems. Adv. Space Res., 13, pp. 59–63.

    Article  ADS  Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1991. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus, 89, pp. 26–43.

    Article  ADS  Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262, pp. 550–553.

    Article  ADS  Google Scholar 

  • McBride, N. 1997. The importance of the annual meteoroid streams to spacecraft and their detectors. Adv. Space Res., 20, pp. 1513–1516.

    Article  MathSciNet  ADS  Google Scholar 

  • McBride, N., Taylor, A. D., Green, S. F., and McDonnell, J. A. M. 1995. Asymmetries in the natural meteoroid population as sampled by LDEF. Planet. Space Sci., 43, pp. 757–764.

    Article  ADS  Google Scholar 

  • McCracken, C. W., Alexander, W. M., Dubin, M. 1961. Direct measurements of interplanetary dust particles in the vicinity of the Earth. Nature, 192, pp. 441–442.

    Article  ADS  Google Scholar 

  • McCrosky, R. E., and Posen, A. 1961. Orbital elements of photographic meteors. Smithsonian Contrib. Astrophys., 4, pp. 15–84.

    Article  ADS  Google Scholar 

  • McDonnell, J. A. M. 1964. The Study of Micrometeorites from Rockets and Satellites. Ph.D. Thesis (Manchester, England: Victoria University).

    Google Scholar 

  • McDonnell, J. A. M. 1978. Microparticle studies by space instrumentation. In Cosmic Dust, ed. J. A. M. McDonnell (Chichester: J. Wiley & Sons), pp. 337–426.

    Google Scholar 

  • McDonnell, J. A. M., and Baron, J. M. 1995. Penetration rates over 30 years in the space age. In LDEF-69 months in space: third post-retrieval symposium, ed. A. S. Levine, NASA CP-3275, Part 1, pp. 337–351.

    Google Scholar 

  • McDonnell, J. A. M., and Gardner, D. J. 1998. Meteoroid morphology and densities: decoding satellite impact data. Icarus In press.

    Google Scholar 

  • McDonnell, J. A. M., and Ratcliff, P. R. 1992. The geocentric particulate distribution: cometary, asteroidal or space debris? In Asteroids, Comets, Meteors 1991, eds. A. W. Harris and E. Bowell (Houston: Lunar and Planetary Institute), pp. 407–411.

    Google Scholar 

  • McDonnell, J. A. M., and Stevenson, T. J. 1991. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF MAP A0023 experiment). In LDEF 69 months in space-first LDEF Post-Retrieval Symposium, ed. A. S. Levine, NASA CP-3134, Part 1, pp. 443–458.

    Google Scholar 

  • McDonnell, J. A. M., and Sullivan, K. 1992. Hypervelocity impacts on space detectors: decoding the projectile parameters. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: University of Kent), pp. 39–47.

    Google Scholar 

  • McDonnell, J. A. M., Carey, W. C., and Dixon, D. G. 1984a. Cosmic dust collection by the capture cell technique on the Space Shuttle. Nature, 309, pp. 237–240.

    Article  ADS  Google Scholar 

  • McDonnell, J. A. M., Ashworth, D. G., Carey, W. C., Flavill, R. P. and Jennison, R. C. 1984b. Multiple foil microabrasion package. In The Long Duration Exposure Facility (LDEF) mission 1 experiments, eds. L. G. Clark, W. H. Kinard, D. J. Carter and J. L. Jones, NASA SP-473, pp. 117–120.

    Google Scholar 

  • McDonnell, J. A. M., and the Canterbury LDEF MAP Team 1992. Impact cratering from LDEF’s 5.75-year exposure: decoding of the interplanetary and Earth-orbital populations. Proc. Lunar & Planetary Science, 22, pp. 185–193.

    ADS  Google Scholar 

  • McGlaun, J. M., and Yarrington, P. 1993. Large deformation wave codes. In High pressure shock compression of solids, ed. J. R. Asay and M. Shahinpoor (New York: Springer Verlag), pp. 323–353.

    Google Scholar 

  • McKnight, D. S., and Johnson, N. L. 1989. Understanding the true Earth satellite population. 40th Congress of the International Astronautical Federation, paper IAF-89-617.

    Google Scholar 

  • Maiden, C. J., Gehring, J. W., and McMillan, A. R. 1963. Investigation of fundamental mechanism of damage to thin targets by hypervelocity projectiles. NASA TR 63-225.

    Google Scholar 

  • Mandeville, J. C. 1990. Aragat mission dust collection experiment. Adv. Space Res., 10, pp. 397–401.

    Article  ADS  Google Scholar 

  • Mandeville, J. C., and Berthoud, L. B. 1995. Micrometeoroids and debris on LDEF comparison with MIR data. In LDEF-69 months in space: third post-retrieval symposium, ed. A. S. Levine, NASA CP-3275, Part 1, pp. 275–285.

    Google Scholar 

  • Maurette, M., Jehanno, C., Robin, E., and Hammer, C. 1987. Characteristics and mass distribution of extra-terrestrial dust from the Greenland ice cap. Nature, 328, pp. 699–702.

    Article  ADS  Google Scholar 

  • Maurette, M., Olinger, C., Christophe Michel-Levy, M., Kurat, G., Pourchet, M., Brandstatter, F., and Bourot-Denise, M. 1991. A collection of diverse micrometeorites retrieved from 100 tonnes of Antarctic blue ice. Nature, 351, pp. 44–46.

    Article  ADS  Google Scholar 

  • Mawrey, R. S., and Broadhurst, A. D. 1993. Comparison of predicted and measured rates of meteor signals. Radio Science, 28, pp. 415–427.

    Article  ADS  Google Scholar 

  • Mulholland, J. D., Singer, S. F., Oliver, J. P., Weinberg, J. L., Montague, N. L., Wortman, J. J., Kassel, P. C., and Kinard, W. H. 1991. IDE spatio-temporal impact fluxes and high time resolution studies of multi-impact events and long lived debris clouds. In LDEF 69 months in space-first LDEF Post-Retrieval Symposium, ed. A. S. Levine, NASA CP 3134, Part 1, pp. 517–528.

    Google Scholar 

  • Murray, J., and Renard, A. F. 1883. On the measurement characteristics of volcanic ashes and cosmic dust and their origin in deep-sea sediment deposits. Proc. Roy. Soc. Edinburgh, 12, pp. 474–495.

    Google Scholar 

  • Naumann, R. J. 1965. Pegasus measurements of meteoroid penetrations (February 16 - July 20, 1965). NASA TM X-1192.

    Google Scholar 

  • Neish, M. J. 1995. Particle Fluxes on the Long Duration Exposure Facility. Ph. D. Thesis (Canterbury: University of Kent).

    Google Scholar 

  • Nelleson, W. 1995. The development of the European Retrievable Carrier “EuReCa”. Adv. Space Res., 16, pp. 5–16.

    Article  ADS  Google Scholar 

  • Nilsson, C. 1966. Some doubts about the Earth’s dust cloud. Science, 153, pp. 1242–1246.

    Article  ADS  Google Scholar 

  • Novikov, L. S., Voronov, K. E., Semkin, N. D., Verhoturov, V. I., Grafodatsky, O. S., and Maksimov, I. A. 1997. Attempt of measurement of space debris microparticle flux in geosynchronous orbit. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 135–138.

    Google Scholar 

  • Nysmith, C. R, and Denardo, B. P. 1969. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets. NASA TN D-5492.

    Google Scholar 

  • Oliver, J. P., Singer, S. F., Weinberg, J. L., Simon, C. G., and Cooke, W. J. 1995. LDEF Interplanetary Dust Experiment (IDE) results. In LDEF-69 Months in space: third post-retrieval symposium, ed. A. S. Levine, NASA CP-3275, Part 1, pp. 257–273.

    Google Scholar 

  • O’Neal, R L. 1965. The Explorer XXIII micro meteoroid satellite-description and preliminary results for the period November 6, 1964. NASA TM X-1123.

    Google Scholar 

  • O’Neal, R L. 1968. The Explorer XXIII micrometeoroid satellite-description and results for the period Nov 6, 1964, through Nov 5, 1965. NASA TN D-4284.

    Google Scholar 

  • O’Neal, R L., and Lightner, E. B. 1991. Long Duration Exposure Facility-a general overview. In LDEF-69 months in space: first post-retrieval symposium, ed. A. S. Levine, NASA CP-3194, Part 1, pp. 3–48.

    Google Scholar 

  • Öpik, E. J. 1951. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R.I.A. 54, pp. 165–199.

    MATH  Google Scholar 

  • Öpik, E. J. 1958. Physics of Meteor Flight in the Atmosphere (New York: Wiley Interscience).

    MATH  Google Scholar 

  • Ott, U., and Beggeman, F. 1985. Martian meteorites: are they (all) from Mars? Nature, 317, pp. 509–512.

    Article  ADS  Google Scholar 

  • Pailer, N., and Grün, E. 1980. The penetration limit of thin films. Planet. Space Sci., 28, pp. 321–331.

    Article  ADS  Google Scholar 

  • Rajan, R. S., Brownlee, D. E., Tomandl, D., Hodge, P. W., Farrar, H. and Britten, R. A. 1977. Detection of 4He in stratospheric particles gives evidence of extra-terrestrial origin. Nature, 267, pp. 131–134.

    Article  ADS  Google Scholar 

  • Ratcliff, P. R, and McDonnell, J. A. M. 1992. 2-D numerical computation of the relative contributions of natural material to the orbital component of the near Earth particulate population. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: University of Kent), pp. 115–119.

    Google Scholar 

  • Ratcliff, P. R, Taylor A. D., and McDonnell, J. A. M. 1993a. The LEO microparticle population: computer studies of space debris drag depletion and of interplanetary capture processes. Adv. Space Res., 13, pp. 71–74.

    Article  ADS  Google Scholar 

  • Ratcliff, P. R, Taylor, A. D., and McDonnell, J. A. M. 1993b. The relative efficiency of aerocapture of interplanetary dust for the planets. Planet. Space Sci., 41, pp. 603–608.

    Article  ADS  Google Scholar 

  • Rietmijer, F. J., and Mackinnon, I. D. R 1987. Cometary evolution: clues from chondritic interplanetary dust particles. In Symposium on the diversity of comets, eds. E. J. Rolfe and B. Battrick, ESA SP-278, pp. 363–367.

    Google Scholar 

  • Sawle, D. R 1969. Hypervelocity impact in thin sheets and semi-infinite targets at 15 km/sec. AIAA Hypervelocity Impact Conference, Cincinnati, Ohio, Paper No. 69 p. 378.

    Google Scholar 

  • Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. 1989. Major element composition of stratospheric micrometeorites. Meteoritics, 20, pp. 99–112.

    Article  ADS  Google Scholar 

  • Sdunnus, H., and Klinkrad, H. 1993. An introduction to the ESA reference model for space debris and meteoroids. In Proc. First European Conference on Space Debris, ed. W. Flury, ESA SD-01, pp. 343–348.

    Google Scholar 

  • Sdunnus H. 1995. Meteoroid and space debris terrestrial environment reference model—final report. Institute of Spaceflight Technology and Nuclear Reactor Technology, Technical University of Braunschweig, Germany. ESA Contract No. 10453/93/D/CS.

    Google Scholar 

  • See, T. H., Allbrookes, M. K., Atkinson, D. R, Sapp, C. A., Simon, C. G., and Zolensky, M. E. 1991. Meteoroid and debris special investigator group data acquisition procedures. In LDEF 69 months in space-first LDEF Post-Retrieval Symposium, ed. A. S. Levine, NASA CP 3134, pp. 459–476.

    Google Scholar 

  • See, T. H., Mack, K. S., Warren, J. L., Zolensky, M. E., and Zook, H. A. 1993. Continued investigation of LDEF’s structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group. In LDEF-69 Months in space: second post-retrieval symposium, ed. A. S. Levine, NASA CP-3194, Part 2, pp. 313–324.

    Google Scholar 

  • See, T. H., Zolensky, M. E., Bernhardt, R. P., Warren, J. L., Sapp, C. A., and Dardano, C. B. 1995. LDEF Meteoroid and Debris Special Investigator Group investigations and activities at the Johnson Space Center. In LDEF-69 months in space: third postretrieval symposium, ed. A. S. Levine, NASA CP-3275, Part 1, pp. 257–273.

    Google Scholar 

  • Sekanina, Z., and Southworth, RB. 1975. Physical and dynamical studies of meteors: meteor fragmentation and stream distribution studies. NASA contractor report CR-2615, Smithsonian Institution, Cambridge, MA.

    Google Scholar 

  • Yu Shanbing, Sun Gengchen and Tan Qingming 1994. Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick targets. Int. J. Impact Engng., 15, pp. 67–77.

    Article  Google Scholar 

  • Sorensen, N. R 1965. Systematic investigation of crater formation. In Proceedings of the 7th Hypervelocity Impact Symposium Volume VI-Experiments, (Florida: Orlando), pp. 281–325.

    Google Scholar 

  • Singer, S. F., Stanley J. E., and Kassel, P. C. 1985. The LDEF Interplanetary Dust Experiment. In Properties and interactions of interplanetary dust, eds. R H. Giese and P. Lamy (Dordrecht: Reidel), pp. 117–120.

    Google Scholar 

  • Singer, S. F., Stanley, J. E., Kassel, P. C., and Wortman, J. J. 1984. Interplanetary Dust Experiment (A0201). In The Long Duration Exposure Facility (LDEF) mission 1 experiments NASA SP-473.

    Google Scholar 

  • Singer, S. F., Stanley, J. E., Kassel, P. C., Kinard, W. H., Wortman, J. J., Weinberg, J. L., Mulholland, J. D., Eichorn, G., Cooke, W. J., and Mantague, N. 1991. First spatiotemporal results from the LDEF Interplanetary Dust Experiment. Adv. Space Res., 11, pp. 115–122.

    Article  ADS  Google Scholar 

  • Southworth, R B., and Sekanina, Z. 1973. Physical and dynamical studies of meteors. NASA CR-2316, Smithsonian Institution, Cambridge, MA.

    Google Scholar 

  • Stansbery, E. G., Kessler, D. J., Tracy, T., Matney, M. J., and Stanley, J. 1995. Characterization of the orbital debris environment from Haystack radar measurements. Adv. Space Res., 16, pp. 5–16.

    Article  ADS  Google Scholar 

  • Staubach, P., and Grün, E. 1995. Development of an upgraded meteoroid model. Adv. Space Res., 16, pp. 103–106.

    Article  ADS  Google Scholar 

  • Staubach, P., Grün, E., and Jehn, R. 1997. The meteoroid environment near Earth. Adv. Space Res., 19, pp. 301–308.

    Article  ADS  Google Scholar 

  • Stevenson, T. J. 1988. EuReCa TICCE—a nine month survey of cosmic dust and space debris at 500 km altitude. J. Brit. Interplan. Soc., 41, pp. 429–432.

    ADS  Google Scholar 

  • Štohl, J. 1986. The distribution of sporadic meteor radiants and orbits. In Asteroids Comets Meteors II, eds C.-I. Lagerkivist, B. A. Lindblad, H. Lundstedt and H. Rickman (Sweden: University of Uppsala Press), pp. 565–574.

    Google Scholar 

  • Taylor, A. D. 1995a. The Harvard Radio Meteor Project meteor velocity distribution reappraised. Icarus, 116, pp. 154–158.

    Article  ADS  Google Scholar 

  • Taylor, A. D. 1995b. Earth encounter velocities for interplanetary meteoroids. Adv. Space Res., 17, pp. 205–209.

    Article  ADS  Google Scholar 

  • Taylor, A. D., and McBride, N. 1997. A radiant-resolved meteoroid model. In Proc. Second European Conference on Space Debris, eds. B. Kaldeich-Schü;rmann and B. Harris, ESA SP-393, pp. 375–380.

    Google Scholar 

  • Taylor, A. D., Baggaley, W. J., and Steel, D. I. 1996. Discovery of interstellar dust entering the Earth’s atmosphere. Nature, 380, pp. 323–325.

    Article  ADS  Google Scholar 

  • USIG: US Interagency Group (Space) 1989. Report on orbital debris for National Security Council. Washington DC.

    Google Scholar 

  • USIG: US Interagency Group (Space) 1995. Report on orbital debris for National Science and Technology Council Committee on Research and Development. Washington DC.

    Google Scholar 

  • USNRC: US National Research Council 1995. tOrbital debris: a technical assessment. (National Academy Press).

    Google Scholar 

  • Verniani, F. 1973. An analysis of the physical parameters of 5759 faint radio meteors. J. Geophys. Res., 78, pp. 8429–8462.

    Article  ADS  Google Scholar 

  • Watts, A., Atkinson, D., and Rieco, S. 1993. Dimensional scaling for impact cratering and perforation. Technical report (Albuquerque, New Mexico: POD Associates Inc.).

    Google Scholar 

  • Whipple, F. L. 1950. The theory of micro-meteorites. Part I. In an Isothermal Atmosphere. Pmc. Nat. Acad. Sci., 36, pp. 687–693.

    Article  ADS  Google Scholar 

  • Whipple, F. L. 1951. The theory of micro-meteorites. Part II. In heterothermal atmospheres. Pmc. Nat. Acad. Sci., 37, pp. 19–30.

    Article  ADS  Google Scholar 

  • Wisdom, J. 1983. Chaotic behaviour and the origin of the 3:1 Kirkwood gap. Icarus, 56, pp. 57–74.

    Article  ADS  Google Scholar 

  • Wisdom, J. 1985. Meteorites may follow a chaotic route to Earth. Nature, 315, pp. 731–733.

    Article  ADS  Google Scholar 

  • Yamakoshi, K. 1994. Extraterrestrial dust: laboratory studies of interplanetary dust (Dordrecht: Kluwer).

    Google Scholar 

  • Yano, H. 1995. The physics and chemistry of hypervelocity impact signatures on spacecraft: meteoroids and space debris. Ph.D. Thesis (Canterbury: University of Kent).

    Google Scholar 

  • Yoshikawa, M. 1990. Motions of asteroids at the Kirkwood gaps, I. On the 3/1 resonance with Jupiter. Icarus, 87, pp. 78–102.

    Article  ADS  Google Scholar 

  • Zolensky, M. E., See, T. H., Bernhardt, R. P., Barret, R., Hörz, F., Warren, J. L., Dardano, C., and Leago, K. S. 1996. Final activities of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group. Adv. Space Res., 16, pp. 53–65.

    Article  ADS  Google Scholar 

  • Zook, H. A. 1991. Deriving the velocity distribution of meteoroids from the measured meteoroid impact directionality on the various LDEF surfaces. In LDEF-69 months in space: first post-retrieval symposium, ed. A. S. Levine, NASA CP-3134, Part 1, pp. 569–579.

    Google Scholar 

  • Zook, H. A., and Berg, O. E. 1975. A source for hyperbolic cosmic dust particles. Planet. Space Sci., 23, pp. 183–203.

    Article  ADS  Google Scholar 

  • Zukas, J. A. (ed) 1990. High velocity impact dynamics (New York: John Wiley).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDonnell, T., McBride, N., Green, S.F., Ratcliff, P.R., Gardner, D.J., Griffiths, A.D. (2001). Near Earth Environment. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics