Skip to main content

Advertisement

Log in

Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments

  • Published:
Euphytica Aims and scope Submit manuscript

A Correction to this article was published on 15 March 2018

This article has been updated

Abstract

Trace metal elements are essential in daily diets for human health and normal growth. Maize is staple food for people in many countries. However, maize has low mineral concentration which makes it difficult to meet human requirements for micronutrients. The objective of this study was to identify quantitative trait locus (QTL) and predict candidate genes associated with mineral concentration in maize grain. Here, a recombinant inbred line population was used to test phenotype of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn) concentrations in six environments and then a QTL analysis was conducted using single environment analysis along with multiple environment trial (MET) analysis. These two strategies detected a total of 64 and 67 QTLs for target traits, respectively. Single environment analysis revealed 13 QTL bins distributed on seven chromosomes. We found that five candidate genes associated with mineral concentration were located in the same intervals identified by Comparative mapping of meta-QTLs in our previous study. The genetic and phenotypic correlation coefficients were depended on the nutrient traits and they were significant between Fe and Zn, Fe and Cu, Fe and Mn in all environments. The results of this study illustrated the genetic correlation between maize grain mineral concentrations, and identified some promising genomic regions and candidate genes for further studies on the biofortification of mineral concentration in maize grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 15 March 2018

    By mistake this article had a note indicating that the article is part of the following topical collection: “This article is part of the Topical Collection on Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016 Edited by Roland Kölliker, Richard G. F. Visser, Achim Walter & Beat Boller” The article however is not part of this collection and should be seen as such by the reader.

References

  • Akimasa S, Naoki Y, Jixing X, Jian Feng M (2011) OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol 157(4):1832–1840

    Article  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao K, Viraktamath B, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508(2):233–240

    Article  CAS  PubMed  Google Scholar 

  • Benke A, Stich B, Donini P (2011) An analysis of selection on candidate genes for regulation, mobilization, uptake, and transport of iron in maize. Genome 54(8):674–683

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breeding 23(2):197–207

    Article  CAS  Google Scholar 

  • Chakraborti M, Prasanna BM, Hossain F, Mazumdar S, Singh AM, Guleria S, Gupta HS (2011) Identification of kernel iron- and zinc-rich maize inbreds and analysis of genetic diversity using microsatellite markers. J Plant Biochem Biotechnol 20(2):224–233

    Article  CAS  Google Scholar 

  • Chomba E, Westcott CM, Westcott JE, Mpabalwani EM, Krebs NF, Patinkin ZW, Palacios N, Hambidge KM (2015) Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. J Nutr 114:204933

    Google Scholar 

  • Gao X, Huang Y, Chen J (2008) Combining ability analysis of Zn and Fe content in maize seed. J Plant Genet Resour 9(1):36–40

    CAS  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65(01):51–60

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariaterestricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–656

    Article  Google Scholar 

  • Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4(1):21–27

    Article  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y (2015) Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet 16:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of” hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175

    Article  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29(6):551–558

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R (2013) Identification and characterization of thezinc-regulated transporters, iron-regulatedtransporter-like protein (ZIP) gene familyin maize. BMC Plant Biol 13(114):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang H, Wang X, Zhang G, Chen P, Liu D (2006) Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). J Cereal Sci 44(2):212–219

    Article  CAS  Google Scholar 

  • López-Millán AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion in Medicago truncatula. Plant Mol Biol 54(4):583–596

    Article  PubMed  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA, Kochian LV, Glahn RP, Hoekenga OA (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS ONE 6(6):e20429

    Article  PubMed  PubMed Central  Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64(10):2871–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B, Welch R, Glahn RP (2007) Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr 26(10):2307–2319

    Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119(2):353–369

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122(7):1305–1320

    Article  PubMed  Google Scholar 

  • Qin H, Cai Y, Liu Z, Wang G, Wang J, Guo Y, Wang H (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187(3):345–358

    Article  CAS  Google Scholar 

  • Saghai-Maroof M, Soliman K, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81(24):8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintaro K, Haruhiko I, Daichi M, Michiko T, Hiromi N, Satoshi M, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Article  Google Scholar 

  • Šimić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić J, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103(1):47–54

    Article  PubMed  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167(17):1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R, Vasistha NK, Joshi AK (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127(7):1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335(1–2):133–154

    Article  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered esp030

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations Kyazma BV, Wageningen, Netherlands

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59(3):365–372

    Article  CAS  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell Online 14(6):1223–1233

    Article  CAS  Google Scholar 

  • Wan X, Wan J, Jiang L, Wang J, Zhai H, Weng J, Wang H, Lei C, Wang J, Zhang X (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112(7):1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li H, Zhang L, Li C, Meng L (2013) Users’ Manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China, and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo Postal 6-641, 06600 Mexico, DF, Mexico 100081

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179(4):1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245(1):205–214

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36(2):281–287. doi:10.1007/s11033-007-9177-0

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q (2013) Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. PLoS ONE 8(1):e53770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31(1):67–79

    Article  PubMed  Google Scholar 

  • Zdunić Z, Grljušić S, Ledenčan T, Duvnjak T, Šimić D (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151(2–3):55–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Hebei Province Science and Technology Support Program, China (16226323D-2, 14226305D-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Huaduo Zhang and Jingxian Liu have contributed equally to the work.

A correction to this article is available online at https://doi.org/10.1007/s10681-018-2143-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, J., Jin, T. et al. Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments. Euphytica 213, 90 (2017). https://doi.org/10.1007/s10681-017-1875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1875-7

Keywords

Navigation