Skip to main content
Log in

Applications of generalized likelihood ratio method to distribution sensitivities and steady-state simulation

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We provide applications of the generalized likelihood ratio (GLR) method proposed in Peng et al. (2016c) to distribution sensitivity estimation for both finite-horizon and steady-state simulation. Applications on sensitivity of distortion risk measure, gradient-based maximum likelihood estimation, and quantile sensitivity in both finite-horizon and steady-state settings are put together under a single umbrella, and addressed uniformly by the proposed estimator. Empirical comparison of the performance of different methods is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Austin P, Schull M (2003) Quantile regression: a statistic tool for out-of-hospital research. Acad Emerg Med 10(7):789–797

    Article  Google Scholar 

  • Boyle P, Broadie M, Glasserman P (1997) Monte Carlo methods for security pricing. J Econ Dyn Control 21(8):1267–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Broadie M, Glasserman P (1996) Estimating security price derivatives using simulation. Manag Sci 42(2):269–285

    Article  MATH  Google Scholar 

  • Cao X-R (1994) Realization probabilities: The dynamics of queueing systems. Spinger-Verlag, New York

    Book  Google Scholar 

  • Cao X-R (2007) Stochastic learning and optimization: a sensitivity-based approach. Springer Science & Business Media

  • Cao X-R, Wan X (forthcoming) Sensitivity analysis of nonlinear behavior with distorted probability. Mathematical Finance.

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems. Springer Science & Business Media

  • Chen N, Glasserman P (2007) Malliavin Greeks without Malliavin calculus. Stoch Process Appl 117(11):1689–1723

    Article  MathSciNet  MATH  Google Scholar 

  • Chen N, Liu Y (2014) American option sensitivities estimation via a generalized infinitesimal perturbation analysis approach. Oper Res 62(3):616–632

    Article  MathSciNet  MATH  Google Scholar 

  • Crane MA, Iglehart DL (1975) Simulating stable stochastic system, III: Regenerative processes and discrete event simulations. Oper Res 23:33–45

    Article  MathSciNet  MATH  Google Scholar 

  • Fournié E, Lasry J-M, Lebuchoux J, Lions P-L, Touzi N (1999) Applications of Malliavin calculus to Monte Carlo methods in finance. Finance Stochast 3(4):391–412

    Article  MathSciNet  MATH  Google Scholar 

  • Fu MC (2006) Gradient estimation. In: Henderson SG, Nelson BL (eds) Chapter 19 in Handbooks in Operations Research and Management Science, vol 13. Elsevier, pp 575–616

  • Fu MC (2008) What you should know about simulation and derivatives. Nav Res Logist 55(8):723–736

    Article  MathSciNet  MATH  Google Scholar 

  • Fu MC (2015) Stochastic gradient estimation. In: Fu MC (ed) Chapter 5 in handbooks of simulation optimization, vol 216. Springer, pp 105–147

  • Fu MC, Hong LJ, Hu J-Q (2009) Conditional Monte Carlo estimation of quantile sensitivities. Manag Sci 55(12):2019–2027

    Article  MATH  Google Scholar 

  • Fu MC, Hu J-Q (1995) Sensitivity analysis for Monte Carlo simulation of option pricing. Prob Eng Informational Sci 9(03):417–446

    Article  MATH  Google Scholar 

  • Fu MC, Hu J-Q (1997) Conditional monte carlo: Gradient estimation and optimizaiton applications. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Fu MC, Hu J-Q, Nagi R (1995) Comparison of gradient estimation techniques for queues with non-inentical servers. Comput Oper Res 22(7):715–729

    Article  MATH  Google Scholar 

  • Glasserman P (1991) Gradient estimation via perturbation analysis. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Glasserman P (2004) Monte Carlo methods in financial engineering. Springer

  • Glynn PW (1990) Likelihood ratio gradient estimation for stochastic systems. Commun ACM 33(10):75–84

    Article  Google Scholar 

  • Gong WB, Ho Y-C (1987) Smoothed (conditional) perturbation analysis of discrete event dynamic-systems. IEEE Trans Autom Control 32(10):858–866

    Article  MATH  Google Scholar 

  • Heidergott B (2001) Option pricing via Monte Carlo simulation. Prob Eng Informational Sci 15(03):335–349

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, Hordijk A (2004) Single-run gradient estimation via measure-valued differentiation. IEEE Trans Autom Control 49(10):1843–1846

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, Hordijk A, Weisshaupt H (2006) Measure-valued differentiation for stationary Markov chains. Math Oper Res 31(1):154–172

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, Volk-Makarewicz W (2016) A measure-valued differentiation approach to sensitivity analysis of quantiles. Math Oper Res 41(1):293–317

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, Volk-Makarewicz W, Vázquez-Abad F (2010) Gradient estimation for quantiles of stationary waiting times. IFAC Proc Vol 43(12):241–246

    Article  Google Scholar 

  • Ho Y-C, Cao X-R (1991) Discrete event dynamic systems and perturbation analysis kluwer academic publishers. MA, Boston

    Book  Google Scholar 

  • Ho Y-C, Cao X-R, Cassandras C (1983) Infinitesimal and finite perturbation analysis of discrete event dynamic systems. Automatica 19(4):439–445

    Article  MATH  Google Scholar 

  • Ho Y-C, Cassandras C (1983) A new approach to the analysis of discrete event dynamic systems. Automatica 19(2):149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Hong LJ (2009) Estimating quantile sensitivities. Oper Res 57(1):118–130

    Article  MathSciNet  MATH  Google Scholar 

  • Hong LJ, Liu G (2009) Simulating sensitivities of conditional value at risk. Manag Sci 55(2):281–293

    Article  MATH  Google Scholar 

  • Hong LJ, Liu G (2010) Pathwise estimation of probability sensitivities through terminating or steady-state simulations. Oper Res 58(2):357–370

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang G, Fu MC (2015) Technical note — On estimating quantile sensitivities via infinitesimal perturbation analysis. Oper Res 63(2):435–441

    Article  MathSciNet  MATH  Google Scholar 

  • Jorion P (2001) Value at risk. Wiley

  • L’Ecuyer P (1990) A unified view of the IPA, SF, and LR gradient estimation techniques. Manag Sci 36(11):1364–1383

    Article  MATH  Google Scholar 

  • Lei L, Hu J-Q, Fu MC (2016) Quantile sensitivity estimation for regenerative processes. working paper

  • Liu G, Hong LJ (2009) Kernel estimation of quantile sensitivities. Nav Res Logist 56(6):511–525

    Article  MathSciNet  MATH  Google Scholar 

  • Peng Y, Fu MC, Hu J-Q (2014) Gradient-based simulated maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck stochastic volatility models. Quant Finan 14(8):1399–1414

    Article  MATH  Google Scholar 

  • Peng Y, Fu MC, Glynn PW, Hu JQ (2017) On the asymptotic analysis of quantile sensitivity estimation by monte carlo simulation. Submitted to Winter Simulation Conference

  • Peng Y, Fu MC, Hu J-Q (2016a) Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions. Quantitative Finance

  • Peng Y, Fu MC, Hu J-Q (2016b) Sensitivity analysis of distorted risk measure by Monte Carlo simulation. working paper

  • Peng Y, Fu MC, Hu J-Q, Heidergott B (2016c) A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters. submitted to Operations Research

  • Pflug G (1988) Derivatives of probability measures - concepts and applications to the optimization of stochastic systems. Lect Notes Control Inf Sci 103:252–274

    Article  MathSciNet  Google Scholar 

  • Pflug G (1989) Sampling derivative of probabilities. Computing 42:315–328

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein RY, Shapiro A (1993) Discrete event systems: Sensitivity analysis and stochastic optimization by the score function method. Wiley, New York

    MATH  Google Scholar 

  • Rudin W (1964) Principles of mathematical analysis. McGraw-Hill Education, New York

    MATH  Google Scholar 

  • Vázquez-Abad F, Kushner H (1992) Estimation of the derivative of a stationary measure with respect to a control parameter. J Appl Probab 29(2):343–352

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Fu MC, Marcus SI (2012) A new stochastic derivative estimator for discontinuous payoff functions with application to financial derivatives. Oper Res 60 (2):447–460

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (NSF) under Grants CMMI-1362303 and CMMI-1434419, by the National Natural Science Foundation of China (NSFC) under Grants 71571048 and 71071040, by the Air Force of Scientific Research (AFOSR) under Grant FA9550-15-10050, by the Science and Technology Agency of Sichuan Province under Grant 2014GZX0002, by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning, and by the China Postdoctoral Science Foundation under Grant 2015M571495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lei.

Additional information

This article belongs to the Topical Collection: Special Issue on Performance Analysis and Optimization of Discrete Event Systems

Guest Editors: Christos G. Cassandras and Alessandro Giua

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Peng, Y., Fu, M.C. et al. Applications of generalized likelihood ratio method to distribution sensitivities and steady-state simulation. Discrete Event Dyn Syst 28, 109–125 (2018). https://doi.org/10.1007/s10626-017-0247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-017-0247-8

Keywords

Navigation