Skip to main content

Advertisement

Log in

Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Cryopreservation of somatic tissue can be applied in biodiversity conservation, especially for wild species as collared peccary. We aimed to evaluate the effect of vitrification techniques of ear tissue of collared peccary [direct vitrification in cryovials (DVC) or solid-surface vitrification (SSV)] on the layers of epidermis and dermis by conventional histology and cell ability during the in vitro culture. Thus, both the vitrification methods were able to maintain normal patterns of the epidermis as the cornea and granular layers, furthermore the intercellular space and dermal–epidermal junction of the spinous layer when compared to fresh control. Nevertheless, DVC and SSV percentage of normality decreased in the morphological integrity of cytoplasm (37.5 and 25.0%) of spinous layer, respectively, as compared to the fresh fragments (100%, p < 0.05). Moreover, other differences between the fresh control (100%) and DVC tissues were verified in the intra-epidermal cleavage of the spinous (37.5%) and basal (37.5%) layers. In general, DVC and SSV techniques were efficient for the recovery of the somatic cells according to most of the evaluated parameters for the in vitro culture (p > 0.05). In addition, only at time of 72 h (D3), in the growth curve, DVC fragments showed a reduced cell concentration than fresh control. In conclusion, SSV was found to be a more efficient method for vitrifying collared peccary skin tissue when compared to DVC. These results are relevant for the tissue cryopreservation from collared peccary and could also be useful for mammals with phylogenetic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abazari A, Jomha NM, Elliott JA, McGann LE (2013) Cryopreservation of articular cartilage. Cryobiology 66:201–209. doi:10.1016/j.cryobiol.2013.03.001

    Article  CAS  Google Scholar 

  • Aerts JMJ, De Clercq JBP, Andries S, Leroy JLMR, Van Aelst S, Bols PEJ (2008) Follicle survival and growth to antral stages in short-term murine ovarian cortical transplants after Cryologic solid surface vitrification or slow-rate freezing. Cryobiology 57:163–169. doi:10.1016/j.cryobiol.2008.07.011

    Article  CAS  Google Scholar 

  • Al-Aghbari AM, Menino AR Jr (2002) Survival of oocytes recovered from vitrified sheep ovarian tissues. Anim Reprod Sci 71:101–110. doi:10.1016/S0378-4320(02)00011-8

    Article  CAS  Google Scholar 

  • Bos-Mikich A, Marques L, Rodrigues JL, Lothhammer N, Frantz N (2012) The use of a metal container for vitrification of mouse ovaries, as a clinical grade model for human ovarian tissue cryopreservation, after different times and temperatures of transport. J Assist Reprod Genet 29:1267–1271. doi:10.1007/s10815-012-9867-y

    Article  Google Scholar 

  • Brockbank KG, Chen ZZ, Song YC (2010) Vitrification of porcine articular cartilage. Cryobiology 60:217–221. doi:10.1016/j.cryobiol.2009.12.003

    Article  CAS  Google Scholar 

  • Caputcu AT, Akkoc T, Cetinkaya G, Arat S (2013) Tissue cryobanking for conservation programs: effect of tissue type and storage time after death. Cell Tissue Bank 14:1–10. doi:10.1007/s10561-012-9292-6

    Article  CAS  Google Scholar 

  • Carvalho AA, Faustino LR, Silva CMG, Castro SV, Luz HKM, Rossetto R, Lopes CAP, Figueiredo JR, Rodrigues APR, Costa APR (2011) Influence of vitrification techniques and solutions on themorphology and survival of preantral follicles after in vitro culture of caprine ovarian tissue. Theriogenology 76:933–941. doi:10.1016/j.theriogenology.2011.04.024

    Article  CAS  Google Scholar 

  • Carvalho AA, Faustino LR, Silva CMG, Castro SV, Lopes CAP, Santos RR, Báo SN, Figueiredo JR, Rodrigues APR (2013) Novel wide-capacity method for vitrification of caprine ovaries: ovarian tissue cryosystem (OTC). Anim Reprod Sci 138:220–227. doi:10.1016/j.anireprosci.2013.02.015

    Article  CAS  Google Scholar 

  • Cetinkaya G, Arat S (2011) Cryopreservation of cartilage cell and tissue for biobanking. Cryobiology 63:292–297. doi:10.1016/j.cryobiol.2013.11.008

    Article  CAS  Google Scholar 

  • Costa UM, Reischak D, Silva J, Ravassolo AP (2005) Establishment and partial characterization of an ovine synovial membrane cell line obtained by transformation with Simian vírus 40 T antigen. J Virol Methods 128:72–78. doi:10.1016/j.jviromet.2005.03.019

    Article  CAS  Google Scholar 

  • Dariolli R, Bassaneze V, Nakamuta JS, Omae SV, Campos LCG, Krieger JE (2013) Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLoS ONE 8:e67939. doi:10.1371/journal.pone.0067939

    Article  CAS  Google Scholar 

  • Debeer S, Le Luduec JB, Kaiserlian D, Laurent P, Nicolas JF, Dubois B, Kanitakis J (2013) Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatol 23:456–466. doi:10.1684/ejd.2013.2060

    Google Scholar 

  • Desbiez ALJ, Keuroghlian A, Beisiegel BM, Medici EP, Gatti A, Pontes ARM, Campos CB, Tófoli CF, Moraes Junior EA, Azevedo FC, Pinho GM, Cordeiro JLP, Santos Junior TS, Morais AA, Mangini PR, Flesher K, Rodrigues LF, Almeida LB (2012) Avaliação do risco de extinção do cateto Pecari tajacu Linnaeus, 1758, no Brasil. Biod Bras 3:74–83

    Google Scholar 

  • Folch J, Cocero MJ, Chesné P, Alabart JL, Domínguez V, Cognié Y, Vignon X (2009) First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71:1026–1034. doi:10.1016/j.theriogenology.2008.11.005

    Article  CAS  Google Scholar 

  • Ge L, Sun L, Chen J, Mao X, Kong Y, Xiong F, Wu J, Wei H (2010) The viability change of pigskin in vitro. Burns 36:533–538. doi:10.1016/j.burns.2009.08.001

    Article  Google Scholar 

  • Guan WJ, Liu CQ, Li CY, Liu D, Zhang WX, Ma YH (2010) Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris). Cryoletters 31:130–138

    CAS  Google Scholar 

  • Hao Y, Wax D, Zhong Z, Murphy C, Ross JW, Rieke A, Sutovsky P (2009) Porcine skin-derived stem cells can serve as donor cells for nuclear transfer. Cloning Stem Cells 11:101–109. doi:10.1089/clo.2008.0063

    Article  CAS  Google Scholar 

  • Hu PF, Guan WJ, Li XC, Zhang WX, Li CL, Ma YH (2013) Study on characteristics of in vitro culture and intracellular transduction of exogenous proteins in fibroblast cell line of Liaoning cashmere goat. Mol Biol Rep 40:327–336. doi:10.1007/s11033-012-2064-3

    Article  CAS  Google Scholar 

  • IUCN (2016) IUCN Red List of Threatened Species. Version 2015.4. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T4015A72587993.en. www.iucnredlist.org. Accessed 13 Apr 2016

  • Jomha NM, Anoop PC, Bagnall K, Mcgann LE (2002) Effects of increasing concentrations of dimethyl sulfoxide during cryopreservation of porcine articular cartilage. Cell Preserv Technol 1:111–120. doi:10.1089/153834402320882610

    Article  CAS  Google Scholar 

  • León-Quinto T, Simon MA, Cadenas R, Jones J, Martinez-Hernandez FJ, Moreno JM, Soria B (2009) Developing biological resource banks as a supporting tool for wildlife reproduction and conservation: the Iberian lynx bank as a model for other endangered species. Anim Rep Sci 112:347–361. doi:10.1016/j.anireprosci.2008.05.070

    Article  Google Scholar 

  • León-Quinto T, Simón MA, Sánchez Á, Martín F, Soria B (2011) Cryobanking the genetic diversity in the critically endangered Iberian lynx (Lynx pardinus) from skin biopsies. Investigating the cryopreservation and culture ability of highly valuable explants and cells. Cryobiology 62:145–151. doi:10.1016/j.cryobiol.2011.02.001

    Article  Google Scholar 

  • León-Quinto T, Simón MA, Cadenas R, Martínez Á, Serna A (2014) Different cryopreservation requirements in foetal versus adult skin cells from an endangered mammal, the Iberian lynx (Lynx pardinus). Cryobiology 68:227–233. doi:10.1016/j.cryobiol.2014.02.001

    Article  Google Scholar 

  • Li XC, Yue H, Li CY, He XH, Zhao QJ, Ma YH, Ma JZ (2009) Establishment and characterization of a fibroblast cell line derived from jining black grey goat for genetic conservation. Small Rumin Res 87:17–26. doi:10.1016/j.smallrumres.2009.09.028

    Article  Google Scholar 

  • Magalhães R, Nugraha B, Pervaiz S, Yu H, Kuleshova LL (2012) Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes. Biomaterials 33:829–836. doi:10.1016/j.biomaterials.2011.10.015

    Article  Google Scholar 

  • May S, Wainwright JF (1985) Optimum warming rates to maintain glucose metabolism in porcine skin cryopreserved by slow cooling. Cryobiology 22:196–202. doi:10.1016/0011-2240(85)90175-0

    Article  CAS  Google Scholar 

  • Mehrabani D, Manafi N (2013) Role of cultured skin fibroblasts in aesthetic and plastic surgery. World J Plast Surg 2:2–5

    Google Scholar 

  • Mehrabani D, Mahboobi R, Dianatpour M, Zare S, Tamadon A, Hosseini SE (2014) Establishment, culture, and characterization of guinea pig fetal fibroblast cell. Vet Med Int 2014:1–5. doi:10.1155/2014/510328

    Article  Google Scholar 

  • Moniruzzaman M, Bao RM, Taketsuru H, Miyano T (2009) Development of vitrified porcine primordial follicles in xenografts. Theriogenology 72:280–288. doi:10.1016/j.theriogenology.2009.01.024

    Article  CAS  Google Scholar 

  • Nogueira SS, Nogueira-Filho SL (2011) Wildlife farming: an alternative to unsustainable hunting and deforestation in Neotropical forests? Biodivers Conserv 20:1385–1397. doi:10.1007/s10531-011-0047-7

    Article  Google Scholar 

  • Praus R, Böhm F, Dvořák R (1980) Skin cryopreservation: I. Incorporation of radioactive sulfate as a criterion of pigskin graft viability after freezing to −196 °C in the presence of cryoprotectants. Cryobiology 17:130–134. doi:10.1016/0011-2240(80)90017-6

    Article  CAS  Google Scholar 

  • Rodrigues JP, Paraguassu-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56:144–151. doi:10.1016/j.cryobiol.2008.01.003

    Article  CAS  Google Scholar 

  • Roth V (2006) http://www.doubling-time.com/compute.php. Accessed 14 May 2015

  • Saini M, Selokar NL, Raja AK, Sahare AA, Singla SK, Chauhan MS, Palta P (2015) Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo. Theriogenology 84:101–108. doi:10.1016/j.theriogenology.2015.02.018

    Article  CAS  Google Scholar 

  • Santos RR, Tharasanit T, Van Haeften T, Figueiredo JR, Silva JRV, Van den Hurk R (2007) Vitrification of goat preantral follicles enclosed in ovarian tissue by using conventional and solid-surface vitrification methods. Cell Tissue Res 327:167–176. doi:10.1007/s00441-006-0240-2

    Article  CAS  Google Scholar 

  • Santos DO, Mendes A, Nogueira SSDC, Nogueira Filho SLG (2009) Criação comercial de caititus (Pecari tajacu): uma alternativa para o agronegócio. Rev Bras Saúde Prod Anim 10:1–11

    Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19. doi:10.1530/REP-10-0236

    Article  CAS  Google Scholar 

  • Shah SM, Saini N, Ashraf S, Singh MK, Manik RS, Singla SK, Palta P, Chauhan MS (2015) Bone morphogenetic protein 4 (BMP4) induces buffalo (Bubalus bubalis) embryonic stem cell differentiation into germ cells. Biochimie 119:113–124. doi:10.1016/j.biochi.2015.10.021

    Article  CAS  Google Scholar 

  • Silvestre MA, Saeed AM, Escriba MJ, García-Ximénez F (2002) Vitrification and rapid freezing of rabbit fetal tissues and skin samples from rabbits and pigs. Theriogenology 58:69–76. doi:10.1016/S0093-691X(02)00830-0

    Article  CAS  Google Scholar 

  • Silvestre MA, Saeed AM, Cervera RP, Escribá MJ, García-Ximénez F (2003) Rabbit and pig ear skin sample cryobanking: effects pf storage time and temperature of the whole ear extirpated immediately after death. Theriogenology 59:1469–1477. doi:10.1016/S0093-691X(02)01185-8

    Article  CAS  Google Scholar 

  • Silvestre MA, Sánchez JP, Gómez EA (2004) Vitrification of goat, sheep, and cattle skin samples from whole ear extirpated after death and maintained at different storage times and temperatures. Theriogenology 49:221–229. doi:10.1016/j.cryobiol.2004.08.001

    CAS  Google Scholar 

  • Song J, Hua S, Song K, Zhang Y (2007) Culture, characteristics and chromosome complement of Siberian tiger fibroblasts for nuclear transfer. In Vitro Cell Dev Biol Anim 43:203–209. doi:10.1007/s11626-007

    Article  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. doi:10.1002/0471142735.ima03bs21

    Google Scholar 

  • Summerfield A, Meurens F, Ricklin ME (2015) The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 66:14–21. doi:10.1016/j.burns.2012.02.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Brazilian Council of Scientific Development–CNPq (Process No. 477710/2013-1). The authors thank the Centre for Wild Animals Multiplication (CEMAS/UFERSA) for providing the animals and the Laboratory Gonadal Transplantation and In Vitro Embryo Production (LTG-PIV/UFERSA) for technical assistance. AR Silva and MF Oliveira were recipients of CNPq Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexsandra Fernandes Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A.A., Lima, G.L., de Queiroz Neta, L.B. et al. Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques. Cytotechnology 69, 643–654 (2017). https://doi.org/10.1007/s10616-017-0074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0074-7

Keywords

Navigation