Skip to main content

Advertisement

Log in

The use of a metal container for vitrification of mouse ovaries, as a clinical grade model for human ovarian tissue cryopreservation, after different times and temperatures of transport

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Cryopreservation of ovarian tissue is paramount for fertility preservation, with important clinical applications, especially for women suffering from an oncological condition. Several cryopreservation methodologies have been tried in search of better outcomes, especially in terms of primor-dial and primary follicles integrity post-cryopreservation. Vitrification has successfully been applied to ovarian tissue using different carriers for tissue exposure to the liquid nitrogen (LN2).

Methods

We developed an enclosed metal vessel, which has the advantage of a faster heat transfer, when in contact with LN2 avoiding at the same time, the direct contact with tissue. Additionally, we assessed the effect of different times and temperatures of transport between the collection of mouse ovaries and the beginning of cryopreservation, on follicular morphology after vitrification.

Results

Our results suggest that 37 °C and R.T. help to maintain normal primordial and primary follicle morphology for up to 4 hrs after collection and beginning of vitrification in a metal container.

Conclusion

These data show that the metal container is an appropriate carrier for mouse ovary vitrification. The rate of morphologically normal primordial follicles up to 4 hrs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almodin CG, Minguetti-Câmara VC, Meister H, Ferreira JO, Franco RL, Cavalcante AA, Radaelli MR, Bahls AS, Moron AF, Murta CG. Recovery of fertility after grafting of cryopreserved germinative tissue in female rabbits following radiotherapy. Hum Reprod. 2004;19:1287–93.

    Article  PubMed  CAS  Google Scholar 

  2. Almodin CG, Minguetti-Camara VC, Meister H, Ceschin AP, Kriger E, Ferreira JO. Recovery of natural fertility after grafting of cryopreserved germinative tissue in ewes subjected to radiotherapy. Fertil Steril. 2004;81:160–4.

    Article  PubMed  Google Scholar 

  3. Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, Schmidt KL, Andersen AN, Ernst E. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23:2266–72.

    Article  PubMed  Google Scholar 

  4. Chen SU, Chien CL, Wu MY, Chen TH, Lai SM, Lin CW, et al. Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod. 2006;21:2794–800.

    Article  PubMed  Google Scholar 

  5. Choi JY, Lee J-Y, Lee EY, Yoon B-K, Boe DS, Choi DS. Cryopreservation of the mouse ovary inhibits the onset of primordial follicle development. Cryobiology. 2007;54:55–62.

    Article  PubMed  CAS  Google Scholar 

  6. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  PubMed  CAS  Google Scholar 

  7. Ferreira M, Bos-Mikich A, Frantz N, Rodrigues JL, Brunetto AL, Schwartsmann G. The effects of sample size on the outcome of ovarian tissue cryopreservation. Reprod Dom Anim. 2009;45:99–102.

    Article  Google Scholar 

  8. Gandolfi F, Paffoni A, Papasso Brambilla E, Bonetti S, Brevini TA, Ragni G. Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models. Fertil Steril. 2006;85:1150–6.

    Article  PubMed  Google Scholar 

  9. Henry L, Fransolet M, Labied S, Blacher S, Munaut C, Colige A, Kirschvink N, Noël A, Nisolle M, Foidart J-M. Does isoforms 111 and 165 of vascular endothelial growth factor (VEGF111 and 165) improve transplanted ovarian tissue survival? J Assist Reprod Genet. 2011;28:1007–24.

    Article  Google Scholar 

  10. Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M, Bader M, Weiss JM. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction. 2009;138:319–27.

    Article  PubMed  CAS  Google Scholar 

  11. Jeremias E, Bedaiwy MA, Nelson D, Biscotti CV, Falcone T. Assessment of tissue injury in cryopreserved ovarian tissue. Fertil Steril. 2003;79:651–3.

    Article  PubMed  Google Scholar 

  12. Jin SY, Lei L, Shea LD, Zelinski MB, Stouffer RL, Woodruff TK. Markers of growth and development in primate primordial follicles are preserved after slow cryopreservation. Fertil Steril. 2010;93:2627–32.

    Article  PubMed  Google Scholar 

  13. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, Hreinsson J, Hovatta O. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.

    Article  PubMed  CAS  Google Scholar 

  14. Labied S, Delforges Y, Blacher S, Munaut C, Signole N, Colige A, Janssen L, Henry L, d’Hauterive SP, Jouan C, Kirschvink N, Noël A, Nisolle M, Foidart J-M. Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. J Assist Reprod Genet. 2011;28:1007–24.

    Article  Google Scholar 

  15. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353:318–21.

    Article  PubMed  CAS  Google Scholar 

  16. Migishima F, Suzuki-Migishima R, Song SY, Kuramochi T, Azuma S, Nishijimi M. Successful cryopreservation of mouse ovaries by vitrification. Biol Reprod. 2003;68:881–7.

    Article  PubMed  CAS  Google Scholar 

  17. Sheikhi M, Hultenby K, Niklasson B, Lundqvist M, Hovatta O. Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue. Hum Reprod. 2011;26:594–603.

    Article  PubMed  Google Scholar 

  18. Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK, Shea LD. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A. 2011;17:3095–104.

    Article  PubMed  CAS  Google Scholar 

  19. Sugimoto M, Maeda S, Manabe N, Miyamoto H. Development of infantile rat ovaries autotransplanted after cryopreservation by vitrification. Theriogeneology. 2000;53:1093–103.

    Article  CAS  Google Scholar 

  20. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod. 2011;26:2461–72.

    Article  PubMed  Google Scholar 

  21. Tokieda Y, Ishiwata I, Segino M, Ishikawa H, Sato K. Establishment of a novel method for cryopreservation and thawing of the mouse ovary. Hum Cell. 2002;15:230–7.

    Article  PubMed  Google Scholar 

  22. von Wolff M, Donnez J, Hovatta O, Keros V, Maltaris T, Montag M, Salle B, Sonmezer M, Andersen CY. Cryopreservation and autotransplantation of human ovarian tissue prior to cytotoxic therapy- a technique in its infancy but already successful in fertility treatment. Eur J Cancer. 2009;45:1547–53.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are most thankful to Dr. Elsa Cristina de Mundstock from NAE-Federal University of Rio Grande do Sul, for the critical statistics help and supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Bos-Mikich.

Additional information

Capsule Vitrification of ovarian tissue in a metal container results in high rates of morphologically normal primordial follicles up to 4 hrs between tissue collection and cryopreservation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bos-Mikich, A., Marques, L., Rodrigues, J.L. et al. The use of a metal container for vitrification of mouse ovaries, as a clinical grade model for human ovarian tissue cryopreservation, after different times and temperatures of transport. J Assist Reprod Genet 29, 1267–1271 (2012). https://doi.org/10.1007/s10815-012-9867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9867-y

Keywords

Navigation