Skip to main content
Log in

Effects of poly(ethylene glycol) on the morphology and properties of biocomposites based on polylactide and cellulose nanofibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polylactide (PLA)/cellulose nanofiber (CNF) biocomposites were prepared via solution casting and direct melt mixing. To improve the compatibility, a masterbatch of CNFs and poly(ethylene glycol) (PEG) (1:2) was also prepared. The effects of PEG on the morphology and properties of the biocomposites were investigated. The dispersion/distribution of nanofibers in PLA was improved when the masterbatch was used and the composites were prepared in solution. Substantial effects on the rheological properties of solution-prepared PLA/CNF/PEG composites were observed compared to composites containing no PEG, whereas for melt-prepared composites no significant changes were detected. Increased crystalline content and crystallization temperature were observed for the composites prepared via the masterbatch and solvent casting. The storage modulus of PLA was increased by 42 and 553% at 25 and at 80 °C, respectively, for the solution-based PEG-compatibilized composite containing 2 wt% nanofibers. Also, a better light transmittance was measured for the PLA/CNF/PEG composites prepared in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959. doi:10.1007/s00397-009-0375-7

    Article  CAS  Google Scholar 

  • Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79. doi:10.1016/j.polymertesting.2014.03.002

    Article  CAS  Google Scholar 

  • Adamska K, Voelkel A, Berlińska A (2016) The solubility parameter for biomedical polymers-application of inverse gas chromatography. J Pharm Biomed Anal 127:202–206. doi:10.1016/j.jpba.2016.04.014

    Article  CAS  Google Scholar 

  • Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11:385–416. doi:10.4236/jmmce.2012.114028

    Google Scholar 

  • Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226. doi:10.1007/s10570-014-0523-9

    Article  Google Scholar 

  • Arias A, Heuzey MC, Huneault MA, Ausias G, Bendahou A (2015) Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22:483–498. doi:10.1007/s10570-014-0476-z

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316. doi:10.1021/ma035939u

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  • Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363. doi:10.1016/j.compscitech.2015.07.012

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C (2016a) Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos. doi:10.1002/pc.24259

    Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016b) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897. doi:10.1007/s10570-016-0914-1

    Article  CAS  Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(l-lactic acid). J Appl Polym Sci 90:1731–1738. doi:10.1002/app.12549

    Article  CAS  Google Scholar 

  • Brown EE, Laborie MPG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromol 8:3074–3081. doi:10.1021/bm700448x

    Article  CAS  Google Scholar 

  • Buddhiranon S, Kim N, Kyu T (2011) Morphology development in relation to the ternary phase diagram of biodegradable PDLLA/PCL/PEO blends. Macromol Chem Phys 212:1379–1391. doi:10.1002/macp.201100042

    Article  CAS  Google Scholar 

  • Courgneau C, Ducruet V, Avérous L, Grenet J, Domenek S (2013) Nonisothermal crystallization kinetics of poly(lactide)—effect of plasticizers and nucleating agent. Polym Eng Sci 53:1085–1098. doi:10.1002/pen.23357

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985. doi:10.1002/pc.21116

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384. doi:10.1016/j.carbpol.2012.08.054

    Article  CAS  Google Scholar 

  • Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013a) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74. doi:10.1007/s00397-012-0667-1

    Article  CAS  Google Scholar 

  • Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013b) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54:1361–1369. doi:10.1016/j.polymer.2012.12.066

    Article  CAS  Google Scholar 

  • Hendrick E, Frey M (2014) Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of PLA-b-PEG co-polymers. J Eng Fibers Fabr 9:153–164

    CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106. doi:10.1016/j.compscitech.2008.03.006

    Article  CAS  Google Scholar 

  • Janardhnan S, Sain M (2011) Bio-treatment of natural fibers in isolation of cellulose nanofibres: impact of pre-refining of fibers on bio-treatment efficiency and nanofiber yield. J Polym Environ 19:615–621. doi:10.1007/s10924-011-0312-6

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. doi:10.1016/j.compscitech.2010.07.005

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997. doi:10.1007/s10924-012-0503-9

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. doi:10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  • Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114. doi:10.1016/j.carbpol.2015.01.012

    Article  CAS  Google Scholar 

  • Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces 6:8146–8157. doi:10.1021/am500577e

    Article  CAS  Google Scholar 

  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A Appl Sci Manuf 42:1509–1514. doi:10.1016/j.compositesa.2011.07.003

    Article  Google Scholar 

  • La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588. doi:10.1016/j.compositesa.2011.01.017

    Article  Google Scholar 

  • Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733. doi:10.1016/j.compscitech.2009.08.016

    Article  CAS  Google Scholar 

  • Lee KY, Tang M, Williams CK, Bismarck A (2012) Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Technol 72:1646–1650. doi:10.1016/j.compscitech.2012.07.003

    Article  CAS  Google Scholar 

  • Li ZQ, Zhou XD, Pei CH (2010) Preparation and characterization of bacterial cellulose/polylactide nanocomposites. Polym Plast Technol 49:141–146. doi:10.1080/03602550903284198

    Article  CAS  Google Scholar 

  • Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Gou J, Hui D, Zhou Z (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos Part B Eng 62:191–197. doi:10.1016/j.compositesb.2014.02.030

    Article  CAS  Google Scholar 

  • Marais A, Kochumalayil JJ, Nilsson C, Fogelström L, Gamstedt EK (2012) Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA. Carbohydr Polym 89:1038–1043. doi:10.1016/j.carbpol.2012.03.051

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties, vol 938. Oxford University Press, Oxford, pp 114–131. doi:10.1021/bk-2006-0938.ch009

    Chapter  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262. doi:10.1007/s10570-013-0007-3

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297. doi:10.1016/j.compscitech.2009.03.004

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196. doi:10.1016/j.compscitech.2005.12.010

    Article  CAS  Google Scholar 

  • Plummer CG, Choo CC, Boissard CR, Bourban PE, Månson JA (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci 291:2203–2211. doi:10.1007/s00396-013-2968-z

    Article  CAS  Google Scholar 

  • Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823

    CAS  Google Scholar 

  • Ramezani Kakroodi A, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from aloe vera rind. J Nanomater 2014:1–7. doi:10.1155/2014/903498

    Article  Google Scholar 

  • Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. doi:10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  • Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR (2016a) High-performance polylactide biocomposites reinforced with cellulose nanofibers. SPE Plast Res. doi:10.2417/spepro.006650

    Google Scholar 

  • Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR (2016b) Rheological, mechanical, and thermal properties of polylactide/cellulose nanofiber biocomposites. Polym Compos. doi:10.1002/pc.24127

    Google Scholar 

  • Safdari F, Carreau PJ, Heuzey MC, Kamal MR, Sain MM (2016c) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose. doi:10.1007/s10570-016-1137-1

    Google Scholar 

  • Saffar A, Jalali Dil E, Carreau PJ, Ajji A, Kamal MR (2016) Phase behavior of binary blends of PP/PP-g-AA: limitations of the conventional characterization techniques. Polym Int 65:508–515. doi:10.1002/pi.5082

    Article  CAS  Google Scholar 

  • Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004. doi:10.1007/s10570-010-9430-x

    Article  CAS  Google Scholar 

  • Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505. doi:10.1002/(SICI)1097-4628(19971121)66:8<1495:AID-APP10>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192. doi:10.1016/j.compscitech.2009.02.022

    Article  CAS  Google Scholar 

  • Tercjak A, Gutierrez J, Barud HS, Domeneguetti RR, Ribeiro SJL (2015) Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS Appl Mater Interfaces 7:4142–4150. doi:10.1021/am508273x

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromol 11:454–464. doi:10.1021/bm901186u

    Article  CAS  Google Scholar 

  • Tome LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13:419–427. doi:10.1039/C0GC00545B

    Article  CAS  Google Scholar 

  • Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085. doi:10.1021/am301438g

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2:371–388

    CAS  Google Scholar 

  • Wang Y, Li M, Hu D, Shen C (2010) Accelerating the crystallization of poly(lactic acid). SPE Plast Res. doi:10.1002/spepro.002983

    Google Scholar 

  • Wu CS (2009) Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polym Degrad Stab 94:1076–1084. doi:10.1016/j.polymdegradstab.2009.04.002

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi:10.1021/am302624t

    Article  CAS  Google Scholar 

  • Xu X, Wang H, Jiang L, Wang X, Payne SA, Zhu JY, Li R (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409–3416. doi:10.1021/ma402627j

    Article  CAS  Google Scholar 

  • Zhang K, Nagarajan V, Misra M, Mohanty AK (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces 6:12436–12448. doi:10.1021/am502337u

    Article  CAS  Google Scholar 

  • Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854. doi:10.1021/am4005072

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Network for Innovative Plastic Materials and Manufacturing Processes (NIPMMP). The authors also wish to thank Professor Mohini M. Sain of the University of Toronto for providing the CNFs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Carreau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdari, F., Carreau, P.J., Heuzey, M.C. et al. Effects of poly(ethylene glycol) on the morphology and properties of biocomposites based on polylactide and cellulose nanofibers. Cellulose 24, 2877–2893 (2017). https://doi.org/10.1007/s10570-017-1327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1327-5

Keywords

Navigation