Skip to main content
Log in

Complete nanofibrillation of cellulose prepared by phosphorylation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, we prepared phosphorylated pulp with a phosphorous content of 1.23 mmol/g by adding an aqueous solution of NH4H2PO4 and urea to softwood pulp sheets followed by drying and curing with hot air and obtained cellulose nanofibers (CNFs) with a uniform width of 3–4 nm in approximately 100% gravimetric yield by high-pressure homogenization of the phosphorylated pulp slurry. After phosphorylation, no significant decrease in the pulp recovery ratio was observed, and the viscosity-average degree of polymerization of phosphorylated pulp was almost equal to that of the original pulp. In addition, the crystal structure and crystallinity index were almost unchanged during phosphorylation. The obtained phosphorylated CNF dispersion was highly transparent, and the maximum total light transmittance was nearly 100% when the CNF content was 0.2 wt%. The maximum viscosity of the CNF dispersions was nearly 10–100 times greater than that of conventional thickeners. Furthermore, we found that not only insufficient but also excessive phosphorylation negatively affected the gravimetric yield, transparency and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464

    Article  CAS  Google Scholar 

  • Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E. Kreiger Publishing Co., Humington, pp 423–424

    Google Scholar 

  • Coppick S, Hall WP (1947) Flameproofing textile. In: Little RW (ed) ACS Monograph 104. Reinhold Publishing Corp, New York, pp 179–190

    Google Scholar 

  • Csiszar E, Kalic P, Kobol A, Ferreira EP (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480

    Article  CAS  Google Scholar 

  • Davis FV, Findlay J, Rogers E (1949) The urea-phosphoric acid method of flameproofing textiles. J Text Inst Trans 40:839–854

    Article  Google Scholar 

  • De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230

    Article  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  CAS  Google Scholar 

  • Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29:176–184

    Article  CAS  Google Scholar 

  • Furuhata T, Seki N, Arai M (2011) Decomposition behavior of urea in high temperature atmosphere. Trans Jpn Soc Mech Eng Ser B 77:1858–1867

    Article  CAS  Google Scholar 

  • Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16:3399–3410

    Article  CAS  Google Scholar 

  • Groebe F (1937) Electrical insulation and method of making the same. US patent 2089697

  • Guthrie JD (1952) Ion exchange cottons. Ind Eng Chem 44:2187–2189

    Article  CAS  Google Scholar 

  • Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406

    Article  CAS  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Iwamoto S, Endo T (2015) 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett 4:80–83

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  CAS  Google Scholar 

  • Katsuura K (1957) Studies on the cellulose phosphate (part II) thermal stability of cellulose phosphate. Sen’i Gakkaishi 13:28–30

    Article  CAS  Google Scholar 

  • Katsuura K, Mizuno T (1966) Flameproofing of cotton fabrics with urea and phosphoric acid in organic solvent. Sen’i Gakkaishi 22:510–514

    Article  CAS  Google Scholar 

  • Katsuura K, Nonaka S (1957) Studies on the cellulose phosphate (part I) preparation of cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 13:24–28

    Article  CAS  Google Scholar 

  • Katsuura K, Mizuno T, Kimoto H, Ito J (1963) Studies on cellulose phosphate part III. Preparation of soluble cellulose phosphate by the urea-phosphoric acid method. Sen’i Gakkaishi 19:472–476

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mucalo MR, Yokogawa Y, Toriyama M, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K (1995) Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med 6:597–605

    Article  CAS  Google Scholar 

  • Nada AMA, Eid MA, El Bahnasawy RM, Khalifa MN (2002) Preparation and characterization of cation exchangers from agricultural residues. J Appl Polym Sci 85:792–800

    Article  CAS  Google Scholar 

  • Nuessle AC, Ford FM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26:32–39

    Article  CAS  Google Scholar 

  • Reid JD, Mazzeno LW (1949) Preparation and properties of cellulose phosphates. Ind Eng Chem 41:2828–2831

    Article  CAS  Google Scholar 

  • Reid JD, Mazzeno LW, Buras EM (1949) Composition of two types of cellulose phosphates. Ind Eng Chem 41:2831–2834

    Article  CAS  Google Scholar 

  • Rockstein M, Herron P (1951) Colorimetric determination of inorganic phosphate in microgram quantities. Anal Chem 23:1500–1501

    Article  CAS  Google Scholar 

  • Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Smith DK, Bampton RF, Alexander W (1963) Use of new solvents for evaluating chemical cellulose for the viscose process. Ind Eng Chem Process Des Dev 2:57–62

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Suflet DM, Chitanu GC, Popa V (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827

    CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19:1821–1836

    Article  CAS  Google Scholar 

  • Zeronian SH, Adams S, Alger K, Lipska AE (1980) Phosphorylation of cellulose: effect of the reactivity of the starting polymer on the properties of the phosphorylated product. J Appl Polym Sci 25:519–528

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Akira Isogai for insightful comments and Mengchen Zhao for performing transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Noguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, Y., Homma, I. & Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24, 1295–1305 (2017). https://doi.org/10.1007/s10570-017-1191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1191-3

Keywords

Navigation