Skip to main content
Log in

Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A relatively new approach for wood protection against fungal decay is based on hydrophobization of wood and on lowering its moisture content. Water repellence of wood can be increased by polymerization of hydrophobic monomers in wood cell walls. It was found that Norway spruce wood after treatment with octadecyltrichlorosilane exhibited reduced water uptake by the wood cell walls, lowered water vapour sorption, and significantly increased dimensional stability of wood in terms of anti-swelling efficiency. Hydrophobicity and lower equilibrium moisture content were shown to cause increased resistance of the treated samples against brown-rot decay and molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashurst WR, Yau C, Carraro C, Lee C, Kluth GJ, Howe RT, Maboudian R (2001) Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS. Sens Actuators A 91(3):239–248

    Article  CAS  Google Scholar 

  • Bourlinos AB, Chowdhury SR, Jiang DD, An YU, Zhang Q, Archer LA, Giannelis EP (2005) Layered organosilicate nanoparticles with liquid like behavior. Small 1(1):80–82

    Article  CAS  Google Scholar 

  • BS EN 113 (1997) Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values

  • Carll G, Highley TL (1999) Decay of wood and wood-based products above ground in buildings. J Test Eval 27(2):150–158

    Article  Google Scholar 

  • CEN/TS 15083-1 (2006) Durability of wood and wood-based products. Determination of the natural durability of solid wood against wood-destroying fungi, test methods. Part 1: basidiomycetes

  • CEN/TS 15119-1 (2008) Durability of wood and wood-based products. Determination of emissions from preservative treated wood to the environment. Part 1: wood held in the storage yard after treatment and wooden commodities exposed in use class 3

  • CEN/TS 15119-2 (2013) Durability of wood and wood-based products. Determination of emissions from preservative treated wood to the environment. Part 2: wooden commodities exposed in use class 4 or 5

  • De Vetter L, Stevens M, Van Acker J (2009) Fungal decay resistance and durability of organosilicon-treated wood. Int Biodeterior Biodegrad 63(2):130–134

    Article  Google Scholar 

  • Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38(7):555–566

    Article  CAS  Google Scholar 

  • Donath S, Militz H, Mai C (2006) Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60(2):210–216

    Article  CAS  Google Scholar 

  • Dubey MK, Pang S, Walker J (2012) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1):49–57

    Article  CAS  Google Scholar 

  • Engelund ET, Thygesen LG, Svensson S, Hill CA (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161

    Article  CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33(2):111–124

    Article  CAS  Google Scholar 

  • Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. Wood handbook: wood as an engineering material: chapter 4. Centennial ed. General technical report FPL; GTR-190. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 4.1–4.19

  • Goethals P, Stevens M (1994) Dimensional stability and decay resistance of wood upon modification with some new type chemical reactants. IRG/WP 94-40028. The International Research Group on Wood Protection, Stockholm

  • Hill CA (2007) Wood modification: chemical, thermal and other processes, vol 5. Wiley, New York

    Google Scholar 

  • Hill CAS, Farahani MRM, Hale MDC (2004) The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung 58(3):316–325

    Article  CAS  Google Scholar 

  • Hrovatin J, Jeram G, Kuzman M, Pohleven F (2009) Influence of construction on wetting of wooden fences. Wood Res 54(1):113–124

    Google Scholar 

  • Humar M, Lesar B (2013) Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. Int Biodeterior Biodegrad 85:223–227

    Article  CAS  Google Scholar 

  • ISO 11341 (2004) Paints and varnishes—artificial weathering and exposure to artificial radiation—exposure to filtered xenon-arc radiation

  • Jalaludi Z, Hill CAS, Samsi HW, Husain H, Xie Y (2010) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood-Horrobin model. Holzforschung 64(6):763–770

    Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Eur J Wood Wood Prod 60(1):1–6

    Article  CAS  Google Scholar 

  • Keplinger T, Cabane E, Chanana M, Hass P, Merk V, Gierlinger N, Burgert I (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater 11:256–263

    Article  CAS  Google Scholar 

  • Korner S, Pecina H, Wienhaus O (1990) Investigations on the identification of the beginning brown-rot fungus infestation of wood by means of IR spectroscopy. Holz als Roh- und Werksto 7(48):413–416

    Article  Google Scholar 

  • Korner I, Faix O, Wienhaus O (1992) Attempt to determine brown-rot breakdown of scots pine wood with the aid of FTIR spectroscopy. Holz als Roh- und Werksto 7(50):363–367

    Article  Google Scholar 

  • Kudanga T, Nugrohojo E, Prasetyo J, Sipilä P, Nousiainen P, Widsten A, Kandelbauer G, Nyanhongo S, Guebitz G (2008) Laccase-mediated wood surface functionalization. Eng Life Sci 8(3):297–302

    Article  CAS  Google Scholar 

  • Kumar A, Petrič M, Kričej B, Žigon J, Tywoniak J, Hajek P, Pavlič M (2015) Liquefied wood based polyurethane-nanosilica hybrid coatings and hydrophobization by self-assembled monolayers of orthotrichlorosilane (OTS). ACS Sustain Chem Eng 3(10):2533–2541

    Article  CAS  Google Scholar 

  • Lesar B, Humar M (2011) Use of wax emulsions for improvement of wood durability and sorption properties. Eur J Wood Prod 69(2):231–238

    Article  CAS  Google Scholar 

  • Lesar B, Pavlič M, Petrič M, Škapin AS, Humar M (2011) Wax treatment of wood slows photodegradation. Polym Degrad Stab 96(7):1271–1278

    Article  CAS  Google Scholar 

  • Mahltig B, Arnold M, Löthman P (2010) Surface properties of sol–gel treated thermally modified wood. J Sol–Gel Sci Technol 55(2):221–227

    Article  CAS  Google Scholar 

  • Mohammed-Ziegler I, Oszlánczi Á, Somfai B, Hórvölgyi Z, Pászli I, Holmgren A, Forsling W (2004) Surface free energy of natural and surface-modified tropical and European wood species. J Adhes Sci Technol 18(6):687–713

    Article  CAS  Google Scholar 

  • Mohammed-Ziegler I, Hórvölgyi Z, Toth A, Forsling W, Holmgren A (2006) Wettability and spectroscopic characterization of silylated wood samples. Polym Adv Technol 17(11–12):932–939

    Article  CAS  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52(3):151–160

    Article  CAS  Google Scholar 

  • Panov D, Terziev N (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int Biodeterior Biodegrad 63(4):456–461

    Article  CAS  Google Scholar 

  • Parikh AN, Schivley MA, Koo E, Seshadri K, Aurentz D, Mueller K, Allara DL (1997) n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-octadecyltrichlorosilane. J Am Chem Soc 119(13):3135–3143

    Article  CAS  Google Scholar 

  • Petrič M (2013) Surface modification of wood. Rev Adhes Adhes 1(2):216–247

    Article  Google Scholar 

  • Petrič M, Oven P (2015) Determination of wettability of wood and its significance in wood science and technology: a critical review. Rev Adhes Adhes 3(2):121–187

    Article  Google Scholar 

  • Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20(2):103–111

    Article  CAS  Google Scholar 

  • Popescu C-M, Hill CAS, Curling S, Ordmondroyd G, Xie Y (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49(5):2362–2371

    Article  CAS  Google Scholar 

  • Rautkari L, Hill CA, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48(18):6352–6356

    Article  CAS  Google Scholar 

  • Rowell RM (2005) Chemical modification of wood. Handbook of wood chemistry and wood composites, CRC Press, pp 447–457

  • Rowell RM (2006) Chemical modification of wood: a short review. Wood Mater Sci Eng 1:29–33

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur J Wood Wood Prod 56(3):149–153

    Article  CAS  Google Scholar 

  • Wang X, Chai Y, Liu J (2013) Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung 67(6):667–672

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117(3):1674–1682

    CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the European social fund within the framework of realizing the project “Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague”, CZ.1.07/2.3.00/30.0034. Financial support of the Slovenian Research Agency through the research programme P4-0015 “Wood and lignocellulose composites” is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuj Kumar or Marko Petrič.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ryparová, P., Škapin, A.S. et al. Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 23, 3249–3263 (2016). https://doi.org/10.1007/s10570-016-1009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1009-8

Keywords

Navigation