Skip to main content
Log in

The Donders Model of the Circulation in Normo- and Pathophysiology

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

The solution of some recent as well as of long standing problems, unanswerable due to experimental inaccessibility or moral objections are addressed. In this report, a model of the closed human cardiovascular loop is developed. This model, using one set of 88 equations, allows variations from normal resting conditions to exercise, as well as to the ultimate condition of a circulation following cardiac arrest. The principal purpose of the model is to evaluate the continuum of physiological conditions to cardiopulmonary resuscitation (CPR) effects within the circulation.

Within the model, Harvey’s view of the circulation has been broadened to include impedance-defined flow as a unifying concept, and as a mechanism in CPR. The model shows that depth of respiration, sympathetic stimulation of cardiac contractile properties and baroreceptor activity can exert powerful influences on the increase in cardiac output, while heart and respiratory rate increases tend to exert an inhibiting influence, with the pressure and flow curves compatible with accepted references. Impedance-defined flow encompasses both positive and negative effects.

The model also demonstrates the limitations to cardiopulmonary resuscitation caused by external force applied to intrathoracic structures, with effective cardiac output being limited by collapse and sloshing. Stroke volumes from 6 to 51 ml are demonstrated. It shows that the clinical inclination to apply high pressures to intrathoracic structures may not be rewarded with improved net flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abel FL, Waldhausen JA. Respiratory and cardiac effects on venous return. Am Heart J 1969;78:266–75.

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Voorhees WD, Fitzgerald KR, Holmes HR, Geddes LA. Relationship to blood pressure and flow during CPR to chest compression amplitude: evidence for an effective compression threshold. Ann Emerg Med 1983;12:527–32.

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Weaver C, Ralston SH, Geddes LA. Cardiac, thoracic and abdominal pump mechanisms in cardiopulmonary resuscitation: studies in an electrical model of the circulation. Am J Emerg Med 1984; 2:299–08.

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF. Interposed abdominal compression CPR: a comprehensive evidence based review. Resuscitation 2003;59:71–82.

    Article  PubMed  Google Scholar 

  • Beneken JEW. A mathematical approach to cardio-vascular function: the uncontrolled human system. Ph.D. Dissertation. University of Utrecht, Utrecht, NL. 1965.

  • Beneken JEW, De Wit B. A physical approach to hemodynamic aspects of the human cardio-vascular system Chap. 1. In: Reeve EB and Guyton A, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia PA: Saunders; 1967.

    Google Scholar 

  • Behrenger W, Sterz F, Domanovits H, Hogenberger B, Schoerkhuber W, Frass M, Losert U, Laggner AN. Effects of high impulse CPR on myocardial perfusion during cardiac arrest in pigs. Resuscitation 1997;34:271–9.

    Article  Google Scholar 

  • Ben-Haim SA, Saidel GM. Mathematical model of chest wall mechanics: a phenomenological approach. Ann Biomed Eng 1990;28:37–56.

    Article  Google Scholar 

  • Beyar R, Goldstein Y. Model studies of the effects of thoracic pressure on the circulation. Ann Biomed Eng 1987;15(3–4):373–83.

    PubMed  CAS  Google Scholar 

  • Brecher GA. Venous return. New York NY:Grune & Stratton; 1956.

    Google Scholar 

  • Brouwer R, Wise RA, Hassapoyannes C, Broberger-Barnea B, Permutt S. Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 1985;58(3):954–63.

    Google Scholar 

  • Caesalpinus A. Quaestionum Medicarum, Liber secundus, Venice I. p. 234, 1593.

  • Cole RT, Lucas CL, Cascio WE, Johnson TA. A LabVIEWTM model incorporating an open-loop arterial impedance and a closed loop circulatory system. Ann Biomed Engin 2005; 33(11):1555–73.

    Article  CAS  Google Scholar 

  • Criley M, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA 1976; 236:1246–50.

    Article  PubMed  CAS  Google Scholar 

  • Defares JG, Hara HH, Osborn JJ, and McLeod J Theoretical analysis and computer simulation of the circulation with special reference to the Starling properties of the ventricles. In: Noordergraaf A, Jager G and Westerhof N, editors. Circulatory Analog Computers. Amsterdam NL:North-Holland Publ.; 1963. pp. 91–122.

    Google Scholar 

  • Dick DE, Hillestad RJ, Rideout VC. A computer study on the effect of circulatory system defects. Proc. Ann. Conf. Eng. Med. Biol. p. 89, 1966.

  • Donders FC. Physiologie des Menschen, Hirzel, Leipzig. 1856.

  • Frasch HF, Kresch JY, Noordergraaf A. Interpretation of coronary vascular perfusion Ch. 7. In: Drzewiecki G and Li JJ-K, editors. Analysis and assessment of cardiovascular function. New York, NY: Springer; 1998.

    Google Scholar 

  • Grodins FS. Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Quart Rev Biol 1959;34:93–116.

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC. Textbook of medical physiology. Philadelphia PA: Saunders; 1963.

    Google Scholar 

  • Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Ann Rev Physiol 1972;34:13–46.

    Article  CAS  Google Scholar 

  • Ha RR, Qian J, Ware DL, Zwischenberger B, Bidani A, Clark JW, Jr. An integrative cardiovascular model of the standing and reclining sheep. Cardiovasc Eng 2005;5(2):53–76.

    Article  Google Scholar 

  • Halperin HR, Tsitlik JE, Beyar R, Chandra N, Geurci AD. Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model. Ann Biomed Eng 1987; 15:385–403.

    PubMed  CAS  Google Scholar 

  • Handley AJ, Koster R, Monsieurs K, Perkins GD, Davies S, Bossaert L. European Resuscitation Council guidelines for resuscitation 2005 (Section 2: adult basic life support and use of automated external defibrillators). Resuscitation 2005; 67s1:s7–s23.

    Article  Google Scholar 

  • Harvey W. Exercitatio Anatomica, De Motu Cordis et Sanguinis in Animalibus. Frankford D. 1628.

  • Hill WS, Polleri JO, Matteo AL. Essay on a hydrodynamic analysis of the blood circulation. U of Montevideo, Montevideo UR. 1958.

  • Jochim KE. Arterial pulses simulated in electrical analogues of the circulatory system. Proc Fed Am Soc Exp Biol 1948; 7:62.

    CAS  Google Scholar 

  • Karreman G, Weygandt CN. Theoretical control aspects of the circulation, Chap. 52. In: Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.

    Google Scholar 

  • Klouche K, Weil MH, Sun S, Povoas HP, Kamohara T, Bisera J. Evolution of the stone heart after prolonged cardiac arrest. Chest 2002;122:1006.

    Google Scholar 

  • Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed chest cardiac massage. JAMA 1960; 173:1064–7.

    PubMed  CAS  Google Scholar 

  • Liebau G. Möglichkeit der Förderung des Blutes im Herz- und Gefäszsystems ohne Herz- und Venenklappenfunktion, Verh. deutsch. Ges. Kreislff., 22. Tagung, Seite 354–359, 1956.

  • Lipowsky HH, Kovalscheck S, Zweifach BW. The distribution of bood rheological parameters in the microcirculation. Circ Res 1978; 43:738–49.

    PubMed  CAS  Google Scholar 

  • Marey EJ. Physiologie médicale de la circulation du sang basée sur l’étude graphique des mouvements du cœur et du pouls artériel. Delahaye, Paris FR. 1863.

  • Mayrovitz HN, Wiedeman MP, Noordergraaf A. Interaction in the microcirculation. Ch. 21. Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.

    Google Scholar 

  • Melbin J, Detweiler DK, Riffle RA, Noordergraaf A. Coherence of cardiac output with rate changes. Am J Physiol 243 (Heart Circ. Physiol. 12) H499–H504, 1982.

  • McHale NG, Roddie IC. The effect of transmural pressure on pumping ability in isolated bovine lymphatic vessels. J Physiol 1976;261:255–69.

    PubMed  CAS  Google Scholar 

  • Moreno AH. Dynamics of pressure in the central veins. Chap. 28. In: Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.

    Google Scholar 

  • Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A. Impedance-defined flow. Generalisation of William Harvey’s concept of the circulation-370 years later. Int J Cardiovasc Med Sci 1998;1:205–11.

    Google Scholar 

  • Mukkamala R. A forward model-based analysis of cardiovascular system identification methods. PhD dissertation, Cambridge MA: MIT Press; 2000.

    Google Scholar 

  • Noordergraaf A. Hemodynamics. Chap. 5. In: Schwan HP, editor, Biological engineering. New York NY: McGraw-Hill; 1969.

    Google Scholar 

  • Noordergraaf A. Circulatory system dynamics. New York, NY: Academic Press; 1978.

    Google Scholar 

  • Noordergraaf A. Blood in motion. New York, NY: Springer Verlag; 2006.

    Google Scholar 

  • Noordergraaf GJ, Dijkema TJ, Kortsmit WJPM, Schilders WHA, Scheffers GJ, Noordergraaf A. Modeling in cardiopulmonary resuscitation: pumping the heart. Cardiovasc Eng 2005;5(3):105–18.

    Article  Google Scholar 

  • Noordergraaf GJ, Tilborg GFAJB, Schoonen JAP, Ottesen J, Noordergraaf A. Thoracic CT-scans and cardiovascular models: the effect of external force. Int J Cardiovasc Med Sci 2005;5(1):1–7.

    Google Scholar 

  • Osborn JJ, Hoehne W, Badia W. Ventricular function in the basic regulation of the circulation: Studies with a mechanical analog Chap 2. In: Reeve EB and Guyton A, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia PA: Saunders; 1967.

    Google Scholar 

  • Ottesen JT, Noordergraaf A. Donders vs Harvey, Proc IEEE 26th Ann. Northeast. Bioeng. Conf. Enderle and Macfarlane editors. pp. 43–44, 2000.

  • Palladino JL, Drzewiecki GM, Noordergraaf A. In: Bronzino JD, editor. Modeling strategies and cardiovascular dynamics: CRC handbook of biomedical engineering, 3rd ed. Baton Rouge FL: IEEE Press; 2006.

  • Palladino JL, Ribeiro LC and Noordergraaf A. Human circulatory system model based on Frank’s mechanism. In: Ottesen JT, Danielsen M, editors. Mathematical modelling in medicine. Washington DC: IOS Press; 2000a.

    Google Scholar 

  • Palladino JL, Drzewiecki GM, Noordergraaf A. In: Bronzino JD, editors. Modeling strategies and cardiovascular dynamics: Chap. 158. In: The biomedical engineering handbook, 2nd ed. CRC Press, Vol. II, Boca Raton, FL. 2000b.

  • Paradis NA, Martin GB, Goetting MG, Roosenberg JM, Rivers EP, Appleton TJ, Nowak RM. Simultaneous aortic, jugular bulb and right atrial pressures during cardiopulmonary resuscitation in humans: insights into mechanisms. Circ 1989;61:361–8.

    Google Scholar 

  • Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol 1914;48:357–79.

    PubMed  CAS  Google Scholar 

  • Rothe CF, Selkurt EE. A model of the cardiovascular system for effective teaching. J Appl Physiol 1962;17:156–8.

    PubMed  CAS  Google Scholar 

  • Scharf SM, Brown R, Warner KG, Khuri S. Intrathoracic pressures and left ventricular configuration with respiratory man euvers. J Applied Phys 1989;66(1):481–91.

    CAS  Google Scholar 

  • Shaw DP, Rutherford JS, Williams MJ. The mechanism of blood flow in cardiopulmonary resuscitation—introducing the lung pump. Resuscitation 1997;35(3):255–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR. Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 1983; 11:685–91.

    PubMed  CAS  Google Scholar 

  • Vadot L. Examen de problèmes d’hémodynamique au moyen d’une analogie electrique. Application particuliere aux malformations cardiaques. Path Biol 1962; 10:1499–509.

    CAS  Google Scholar 

  • Warner HR. The use of an analog computer for analysis of control mechanisms in the circulation. Proc IRE 1959; 47:1913–6.

    Google Scholar 

  • Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und ins besondere auf die Pulslehre. Ber. Math. Phys. Cl. Koenigl. Saechs. Ges. Wiss. 1850.

  • Westerhof N, Bosman F, Vries CJ, de, Noordergraaf A. Analog studies of the human arterial tree. J Biomech 1969;2:121–43.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof N, Noordergraaf A. Reduced models of systemic arteries. Proc. 8th Int. Conf. Med. Eng. Chicago. Session 6-2, 1969.

  • Yin CP, Cohen JM, Tsitlik J, Weisfeldt ML (1979) Arterial resistance to collapse as a determinant of peripheral flow resulting from high intrathoracic pressures. Circ 59, 60(Suppl. II):196.

    Google Scholar 

  • Yuan R, Shan Y, Zhu S. Circulating mechanism of the ‘pure’ venous flap: direct observation of the microcirculation. J Reconstr Microsurg 1998;14(3):147–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit J. Noordergraaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noordergraaf, G., Ottesen, J., Kortsmit, W. et al. The Donders Model of the Circulation in Normo- and Pathophysiology. Cardiovasc Eng 6, 51–70 (2006). https://doi.org/10.1007/s10558-006-9004-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-006-9004-6

Keywords

Navigation