Skip to main content
Log in

Mathematical model of chest wall mechanics: A phenomenological approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of chest wall mechanics, based on a phenomenological approach to force balances, provides a quantitative framework for analyzing many types of chest wall movements by using orthogonal displacement coordinates. The moveable components of the ventilatory system include the rib cage, diaphragm, and abdomen. A distinction is made between the lung-apposed and diaphragm-apposed actions on the rib cage. The model equations are derived from “pressure” balances and geometrical relations of the compartments; the stress-displacement relations are hyperbolic. With this model we simulated stiff and flaccid chest wall behavior under normal and constrained conditions associated with abdominal compression, a Mueller maneuver, and a diaphragmatic isometric inspiration. We also examined situations that produce paradoxical as well as orthodox inspiratory movements. The results of these simulations were quantitatively consistent with available data from the literature. A phenomenon predicted by the stiff-wall model during quasi-static inspiration is that the rib cage displacement is negligible near residual volume, but then increases dramatically with lung volume. Since this mathematical model has a sound physical basis and is more comprehensive than previous models, it can be used to predict and analyze the behavior of the chest wall under a wide variety of circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostoni, E.; Mognoni, P.; Torri, G.; Saracino, F. Relation between changes of rib cage circumference and lung volume. J. Appl. Physiol. 20:1179–1186; 1965.

    Google Scholar 

  2. DeTroyer, A.; Heilporn, A. Respiratory mechanics in quadriplegia. The respiratory function of the intercostal muscles. Am. Rev. Respir. Dis. 122:591–600; 1980.

    CAS  Google Scholar 

  3. Derenne, J.P.; Macklem, P.T.; Roussos, C.H. The respiratory muscles: mechanics, control, and pathophysiology. Am. Rev. Respir. Dis. 118:119–133; 1978.

    CAS  PubMed  Google Scholar 

  4. Goldman, M.D.; Mead, J. Mechanical interaction between the diaphragm and rib cage. J. Appl. Physiol. 35:197–204; 1973.

    CAS  PubMed  Google Scholar 

  5. Goldman, M.D. Mechanical interaction between diaphragm and rib cage. Boston view. Am. Rev. Respir. Dis. 119:23–26; 1979a.

    CAS  PubMed  Google Scholar 

  6. Grassino, A.; Goldman, M.D.; Mead, J.; Sears, T.A. Mechanics of the human diaphragm during voluntary contraction: statics. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 44:829–839; 1978.

    CAS  Google Scholar 

  7. Grimby, G.; Goldman, M.; Mead, J. Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J. Appl. Physiol. 41:739–751; 1976.

    CAS  PubMed  Google Scholar 

  8. Heaf, P.H.D.; Prime, F.J. The compliance of the thorax in normal human subjects. Clin. Sci. 15:319; 1956.

    CAS  PubMed  Google Scholar 

  9. Henderson-Smart, D.J.; Read, D.J.C. Depression of intercostal and abdominal muscle activity and vulnerability to asphyxia during active sleep in the newborn. In Guilleminaults, C.; Dement, W.C., eds. Sleep Apnea Syndromes. New York: A.R. Liss; 1978: pp. 93–117.

    Google Scholar 

  10. Jordanoglou, J. Rib movement in health, kyphoscoliosis and ankylosing spondylitis. Thorax 24:407–414; 1969.

    CAS  PubMed  Google Scholar 

  11. Konno, K.; Mead, J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 22:407–422; 1967.

    CAS  PubMed  Google Scholar 

  12. Konno, K.; Mead, J. Static volume-pressure characteristics of the rib cage and abdomen. J. Appl. Physiol. 24:544–548; 1968.

    CAS  PubMed  Google Scholar 

  13. Macklem, P.T.; Gross, D.; Grassino, A.; Roussos, C. Partitioning of inspiratory pressure swings between diaphragm and intercostal/accessory muslces. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 44:200–208; 1978.

    CAS  Google Scholar 

  14. Macklem, P.T. Rib cage diaphragm interaction. Montreal view. Am. Rev. Respir. Dis. 119:27030, 1979.

    Google Scholar 

  15. Macklem, P.T. A mathematical and graphical analysis of inspiratory muscle action. Respir. Physiol. 18:153–171; 1979.

    Google Scholar 

  16. Macklem, P.T. Normal and abnormal function of the diaphragm. Thorax 36:16–163; 1981.

    Google Scholar 

  17. Mead, J. Functional significance of the area of apposition of diaphragm to rib cage. Am. Rev. Respir. Dis. 119, Part 2, Suppl: 31–32; 1979.

    CAS  PubMed  Google Scholar 

  18. Mead, J.; Loring, S.H. Analysis of volume displacement and length changes of the diaphragm during breathing. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 53:750–755; 1982.

    CAS  Google Scholar 

  19. Milic-Emili, J.; Mead, J.; Turner, J.M.; Glauser, E.M. Improved technique for estimating pleural pressure from esophageal balloons. J. Appl. Physiol. 19:207–211; 1964.

    CAS  PubMed  Google Scholar 

  20. Mortola, J.P.; Sant'Ambrogio, G. Motion of the rib cage and the abdomen in tetraplegic patients. Clin. Sci. Mol. Med. 54:25–32; 1978.

    CAS  PubMed  Google Scholar 

  21. Nims, R.G.; Conner, E.H.; Comroe, J.H., Jr. The compliance of the human thorax in anesthetized patients. J. Clin. Invest. 34:744–750; 1950.

    Google Scholar 

  22. Primiano, F.P., Jr. Theoretical analysis of chest well mechanics. J. Biomechanics 15:919–931; 1982.

    Google Scholar 

  23. Rahn, H.; Oti, A.B.; Chadwick, L.E.; Fenn, W.O. The pressure-volume diagram of the thorax and lung. Am. J. Physiol. 146:161–178; 1946.

    Google Scholar 

  24. Sant'Ambrogio, G.; Saibene, F. Contractile properties of the diaphragm in some mammals. Respir. Physiol. 1:349–357; 1970.

    Google Scholar 

  25. Van Lith, P., Johnson, F.N.; Sharp, J.T. Respiratory elastances in relaxed and paralyzed states in normal and abnormal men. J. Appl. Physiol. 23:475–486; 1967.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Haim, S.A., Saidel, G.M. Mathematical model of chest wall mechanics: A phenomenological approach. Ann Biomed Eng 18, 37–56 (1990). https://doi.org/10.1007/BF02368416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368416

Keywords

Navigation