Skip to main content
Log in

Mechanisms of heat tolerance in crop plants

  • Reviews
  • Published:
Biologia Plantarum

Abstract

Due to possible climate changes, heat stress has obtained a serious concern all over the world. Tolerance to this stress via knowledge of metabolic pathways will help us in engineering heat tolerant plants. A group of proteins called heat shock proteins are synthesized following stress and their synthesis is regulated by transcription factors. Under high temperature (HT), reactive oxygen species (ROS) are often induced and can cause damage to lipids, proteins, and nucleic acids. To scavenge the ROS and maintain cell membrane stability, synthesis of antioxidants, osmolytes, and heat shock proteins is of a vital importance. In view of above mentioned, this review highlights the detailed mechanism of pathways involving crucial steps that change during HT stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

APX:

ascorbate peroxidase

AsA:

ascorbate

CAT:

catalase

DHAR:

dehydroascorbate reductase

GPX:

guaiacol peroxidase

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GST:

glutathione-S-transferase

Hsfs:

heat stress transcription factors

Hsps:

heat shock proteins

HT:

high temperature

LMM:

low molecular mass

LPO:

lipid peroxidation

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

MTS:

membrane thermal stability

O2 :

superoxide anion

·OH:

hydroxyl radical

PS:

photosystem

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Agarwal, M., Sarkar, N., Grover, A.: Low molecular weight heat shock proteins in plants. — J. Plant Biol. 30: 141–149, 2003.

    Google Scholar 

  • Ahmad, P., Prasad, M.N.V. (ed.): Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. — Springer, New York 2012.

    Google Scholar 

  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. — Plant Sci. 171: 382–388, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K., Tripp, L., Weber, C., Zielinski, D., Von Koskull-Doring, P.: Heat stress response in plants: a complex game with chaperones and more than 20 heat stress transcription factors. — J. Biosci. 29: 471–487, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Biamonti, G., Caceres, J.F.: Cellular stress and RNA splicing. — Trends Biochem. Sci. 34: 146–153, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Bohnert, H.J., Gong, Q.Q., Li, P.H., Ma, S.S.: Unraveling abiotic stress tolerance mechanisms-getting genomics going. — Curr. Opin. Plant Biol. 9: 180–188, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Bokszczanin, K.L., Fragkostefanakis, S.: Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. — Front. Plant Sci. 4: 315–335, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bosch, S.M.: The role of α-tocopherol in plant stress tolerance. — J. Plant Physiol. 162: 743–748, 2005.

    Article  Google Scholar 

  • Breusegem, F.V.E., Vranova, J.F., Dat, D.I.: The role of active oxygen species in plant signal transduction. — Plant Sci. 16: 405–414, 2001.

    Article  Google Scholar 

  • Chakraborty, U., Pradhan, D.: High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. — J. Plant Interact. 6: 43–52, 2011.

    Article  Google Scholar 

  • Chandrasekar, V., Sairam, R.K., Srivastava, G.C.: Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. — J. Agron. Crop Sci. 185: 219–227, 2000.

    Article  CAS  Google Scholar 

  • Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., Wang, T.T.: A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. — Plant Physiol. 143: 251–262, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chhabra, M.L., Dhawan, A., Sangwan, N., Dhawan, K., Singh, D.: Phytohormones induced amelioration of high temperature stress in Brassica juncea (L.) Czern & Coss. — In: Proceedings of 16th Australian Research Assembly on Brassicas. Pp. 9–11. Ballarat, Victoria 2009.

    Google Scholar 

  • Czarnecka-Verner, E., Yuan, C.X., Scharf, K.-D., Englich, G., Gurley, W.B.: Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. — Plant mol. Biol. 43: 459–471, 2000.

    Article  CAS  PubMed  Google Scholar 

  • DeRocher, A.E., Vierling, E.: Developmental control of small heat shock protein expression during pea seed maturation. — Plant J. 5: 93–102, 1994.

    Article  CAS  Google Scholar 

  • Dixon, D.P., Cole, D.J., Edward, R.: Cloning and characterization of plant theta and zeta class GSTs: implication for plant GST classification. — Chem. Biol. Interact. 133: 33–36, 2001.

    CAS  Google Scholar 

  • Dixon, D.P., Cumminis, I., Cole, D.J., Edwards, R.: Glutathione mediated detoxification system in plants. — Curr. Opin. Plant Biol. 1: 258–266, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Eitzinger, J., Orlandini, S., Stefanski, R., Naylor, R.E.L.: Climate change and agriculture: introductory editorial. — J. agr. Sci. 148: 499–500, 2010.

    Article  Google Scholar 

  • Esfandiari, E., Shekari, F., Esfandiar, M.: The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedlings. — Not. Bot. Hort. Agrobot. Cluj 35: 48–56, 2007.

    CAS  Google Scholar 

  • Feder, M.E., Hofmann, G.E.: Heat-shock proteins, molecular chaperones, and stress response: evolutionary and ecological physiology. — Annu. Rev. Physiol. 61: 243–282, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Garg, N., Manchanda, G.: ROS generation in plants: boon or bane? — Plant Biosystem. 143: 3788–3796, 2009.

    Article  Google Scholar 

  • Giorno, F., Wolters-Arts, M., Grillo, S., Scharf, K., Vriezen, W.H., Mariani, C.: Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. — J. exp. Bot. 61: 453–462, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goyal, M., Asthir, B.: Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. — Plant Growth Regul. 60: 13–25, 2010.

    Article  CAS  Google Scholar 

  • Gupta, S.C., Sharma, A., Mishra, M., Mishra, R., Chowdhuri, D.K.: Heat shock proteins in toxicology: how close and how far? — Life Sci. 86: 377–384, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, N.K., Agarwal, S., Agarwal, V.P., Nathawat, N.S., Gupta, S., Singh, G.: Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. — Acta Physiol. Plant. 35: 1837–1842, 2013.

    Article  CAS  Google Scholar 

  • Hameed, A., Goher, M., Iqbal, N.: Heat stress-induced cell death, changes in antioxidants, lipid peroxidation and protease activity in wheat leaves. — J. Plant Growth Regul. 31: 283–291, 2012.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita, M.: Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. — Plant Biotechnol. Rep. 5: 353–365, 2011.

    Article  Google Scholar 

  • Heckathorn, S.A., Downs, C.A., Sharkey, T.D., Coleman, J.S.: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. — Plant Physiol. 116: 439–444, 1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemantaranjan, A., Nishant Bhanu, A., Singh, M.N., Yadav, D.K., Patel, P.K.: Heat stress responses and thermotolerance. — Adv. Plant agr. Res. 1: 1–10, 2014.

    Google Scholar 

  • Hu, W., Hu, G., Han, B.: Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. — Plant Sci. 176: 583–590, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kanwischer, M., Porfirova, S., Bergmüller, E., Dörmann, P.: Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. — Plant Physiol. 137: 713–723, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., Nayyar, H.: Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. — Physiol. mol. Biol. Plants 17: 203–213, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar, M.S., Kumar, G., Srikanthbabu, V., Udayakumar, M.: Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. — J. Plant Physiol. 164: 111–125, 2007.

    Article  PubMed  Google Scholar 

  • Kurek, I., Chang, T.K., Bertain, S.M., Madrigal, A., Liu, L., Lassner, M.W., Zhu, G.: Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. — Plant Cell 19: 3230–3241, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkindale, J., Knight, M.R.: Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. — Plant Physiol. 128: 682–695, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkindale, J., Hall, J.D., Knight, M.R., Vierling, E.: Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. — Plant Physiol. 138: 882–897, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levitt, M., Gerstein, M., Huang, E., Subbiah, S. Tsai, J.: Protein folding: the endgame. — Annu. Rev. Biochem. 66: 549–579, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, S., Crig, E.A.: The heat-shock proteins. — Annu. Rev. Genet. 22: 631–677, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H.C., Liao, H.Y., Charng, Y.Y.: The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. — Plant Cell Environ. 34: 738–751, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.T., Marmiroli, N.: Molecular genetics of heat tolerance and heat shock proteins in cereals. — Plant mol. Biol. 48: 667–681, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Montillet, J.L., Chamnongpol, S, Rustérucci, C., Dat, J., Van de Cotte, B., Agnel, J.P., Battesti, C., Inzé, D., Van Breusegem, F., Triantaphylides, C.: Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. — Plant Physiol. 138: 1516–1526, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morimoto, R.I.: Cells in stress: the transcriptional activation of heat shock genes. — Science 259: 1409–1410, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R.I.: Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. — Gene 12: 3788–3796, 1998.

    Article  CAS  Google Scholar 

  • Morimoto, R.I., Santoro, M.G.: Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. — Nat. Biotechnol. 16: 833–838, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R.I., Tissieres, A., Georgopoulos, C. (ed): The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 1994.

    Google Scholar 

  • Morrow, G., Inaguma, Y., Kato, K., Tanguay, R.M.: The small heat shock protein Hsp 22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. — J. biol. Chem. 275: 31204–31210, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Morrow, G., Tanguay, R.M.: Small heat shock protein expression and functions during development. — Int. J. Biochem. Cell Biol. 44: 1613–1621, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Nover, L., Baniwal, S.K.: Multiplicity of heat stress transcription factors controlling the complex heat stress response of plants. — In: Proccedings of International Symposium on Environmental Factors, Cellular Stress and Evolution. P. 15. Varanasi 2006.

  • Panaretou, B., Zhai, C.: The heat shock proteins: their roles as multi-component machines for protein folding. — Fungal Biol. Rev. 22: 110–119, 2008.

    Article  Google Scholar 

  • Pastore, A., Martin, S.R., Politou, A., Kondapalli, K.C., Stemmler, T.: Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions. — J. amer. chem. Soc. 129: 5374–5375, 2007.

    Article  CAS  Google Scholar 

  • Preiss, J., Sivak, M.N.: Starch synthesis in sinks and sources. — In: Zamski, E., Schaffer, A.A. (ed.): Photoassimilate Distribution in Plants and Crops. Pp. 63–96. Marcel Dekker, New York 1996.

    Google Scholar 

  • Qu, A.L., Ding, Y.F., Jiang, Q., Zhu, C.: Molecular mechanisms of the plant heat stress response. — Biochem. biophys. Res. Commun. 432: 203–207, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Rasheed, R., Wahid, A., Farooq, M., Hussain, I., Basra, S.M.A.: Role of proline and glycine betaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. — Plant Growth Regul. 65: 35–45, 2011.

    Article  CAS  Google Scholar 

  • Rodriguez, M., Canales, E., Borras-Hidalgo, O.: Molecular aspects of abiotic stress in plants. — Biotechnol. Appl. 22: 1–10, 2005.

    CAS  Google Scholar 

  • Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R., Allen, R.D.: Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/guaiacol peroxidase. — Plant Cell Physiol. 41: 1229–1234, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sairam, R.K., Deshmukh, P.S., Saxena, D.C.: Role of antioxidant systems in wheat genotypes tolerance to water stress. — Biol. Plant. 41: 384–394, 1998.

    Article  Google Scholar 

  • Sairam, R.K., Srivastava, G.C., Sexena, D.C.: Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. — Biol. Plant. 43: 245–251, 2000.

    Article  CAS  Google Scholar 

  • Sakamoto, A., Murata, N.: The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25: 163–171, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sandorf, I., Holländer-Czytko, H.: Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. — Planta 216: 173–179, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Schöffl, F., Prändl, R., Reindl, A.: Regulation of the heat shock response. — Plant Physiol. 117: 1135–1141, 1998.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuetz, T.J., Gallo, G.J., Sheldon, L., Tempst, P., Kingston, R.E.: Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. — Proc. nat. Acad. Sci. USA 88: 6911–6915, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulze-Lefert, P.: Plant immunity: the origami of receptor activation. — Curr. Biol. 14: R22–R24, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sharma-Natu, P., Sumesh, K.V., Ghildiyal, M.C. Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat. — Agron. Crop Sci. 196: 76–80, 2010.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (ed.): Environment and Plant Metabolism: Flexibility and Acclimation. — Bios Scientific Publishers, Oxford 1995.

    Google Scholar 

  • Smith, P., Olesen, J.E.: Synergies between the mitigation of, and adaptation to, climate change in agriculture. — J. agr. Sci. 148: 543–552, 2010.

    Article  CAS  Google Scholar 

  • Snyman, M., Cronje, M.J.: Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. — J. exp. Bot. 59: 2125–2132, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorger, P.K., Nelson, H.C.M.: Trimerization of a yeast transcriptional activator via a coiled-coil motif. — Cell 59: 807–813, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Stone, P.J., Nicolas, M.E.: Wheat cultivars vary widely in their responses of grain yield and quality to short periods of postanthesis heat stress. — Aust. J. Plant Physiol. 21: 887–900, 1994.

    Article  Google Scholar 

  • Sumesh, K.V., Sharma-Natu, P., Ghildiyal, M.C.: Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. — Biol. Plant. 52: 749–753, 2008.

    Article  CAS  Google Scholar 

  • Sun, W., Montagu, M.V., Verbruggen, N.: Small heat shock proteins and stress tolerance in plants. — Biochim. biophys. Acta 1577: 1–9, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L.: Acquired tolerance to temperature extremes. — Trends Plant Sci. 8: 179–187, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Mittler, R.: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. — Physiol. Plant. 126: 45–51, 2006.

    Article  CAS  Google Scholar 

  • Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M.A.: Respiratory burst oxidases: the engines of ROS signaling. — Curr. Opin. Plant Biol. 14: 691–699, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G.: ROS and redox signalling in the response of plants to abiotic stress. — Plant Cell Environ. 35: 259–270, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Timperio, A.M., Egid, M.G., Zolla, L.: Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). — J. Proteomics 71: 391–411, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Tripathy, B.C., Oelmüller, R.: Reactive oxygen species generation and signaling in plants. — Plant Signal. Behavior 7: 1621–1633, 2012.

    Article  CAS  Google Scholar 

  • Tripp, J., Mishra, S.K., Scharf, K.-D.: Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. — Plant Cell Environ. 32: 123–133, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Vierling, E.: The roles of heat shock proteins in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579–620, 1991.

    Article  CAS  Google Scholar 

  • Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16: 123–132, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Von Koskull-Doring, P., Scharf, K.D., Nover, L.: The diversity of plant heat stress transcription factors. — Trends Plant Sci. 12: 452–457, 2007.

    Article  Google Scholar 

  • Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., Apel, K.: The genetic basis of singlet oxygen induced stress responses of Arabidopsis thaliana. — Science 306: 1183–1185, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: an overview. — Environ. exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A.: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. — Trends Plant Sci. 9: 244–252, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Li, J., Zhang, X., Wei, H., Cui, L.: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. — Environ. exp. Bot. 56: 274–285, 2006.

    Article  CAS  Google Scholar 

  • Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I.: Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. — J. biol. Chem. 282: 37794–37804, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Asthir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthir, B. Mechanisms of heat tolerance in crop plants. Biol Plant 59, 620–628 (2015). https://doi.org/10.1007/s10535-015-0539-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0539-5

Additional key words

Navigation