Skip to main content
Log in

Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Salinity is one of the most severe problems in worldwide agricultural production. The effect of salt on dry mass, total glutathione content, its regulatory enzymes, and extent of DNA damage in growing mungbean (Vigna radiata L. Wilczek) seedlings was investigated. The salt stress decreased a dry mass accumulation in the seedlings. A total glutathione (GSH) content and the activities of the enzymes of GSH metabolism were adversely affected by the salt stress. The enhanced accumulation of reactive oxygen species under the NaCl stress caused an increase in DNA damage, measured using a comet assay, in both roots and leaves of the mungbean seedlings. The pretreatment of mungbean seeds with a sublethal dose of NaCl was able to overcome the adverse effects of the salt stress to variable extents by exhibiting significant alterations of all tested parameters, imparting better growth and metabolism of the mungbean seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDNB:

1-chloro-2,4-dinitrobenzene

Chl:

chlorophyll

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid)

EDTA:

ethylene diaminetetraacetic acid

GPx:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione (reduced)

GSSG:

glutathione (oxidized)

GST:

glutathione-S-transferase

MDA:

malondialdehyde

PMSF:

phenylmethane-sulphonyl fluoride

ROS:

reactive oxygen species

SSA:

sulphosalicylic acid

References

  • Agrawal, G.K., Rakwal, R., Jwa, N.S., Agrawal, V.P.: Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPx) gene in seedling leaves. — Gene 283: 227–236, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Alscher, R.G., Donhahue, J.L., Cramer, C.L.: Reactive oxygen species and antioxidants: relationships in green cells. — Physiol. Plant. 100: 224–233, 1997.

    Article  CAS  Google Scholar 

  • Amzallag, N., Lerner, H.R., Poljakoff, M.A.: Induction of increased salt tolerance in Sorghum bicolor by NaCl pretreatment. — J. exp. Bot. 41: 29–34, 1990.

    Article  CAS  Google Scholar 

  • Anderson, J.V., Davis, D.G.: Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. — Physiol. Plant. 120: 421–433, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ando, K., Honma, M., Chiba, S., Tahara, S., Mizutani, J.K.: Glutathione transferase from Mucor javanicus. — Agr. Biol. Chem. 52: 135–139, 1988.

    Article  CAS  Google Scholar 

  • Aravind, P., Prasad, M.N.V.: Modulation of cadmium-induced oxidative stress Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. — Plant. Physiol. Biochem. 43: 107–116, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Arora, S, Saradhi, P.P.: Light induced enhancement in proline levels in Vigna radiata exposed to environmental stresses. — Aust. J. Plant. Physiol. 22: 383–386, 1995.

    Article  CAS  Google Scholar 

  • Bray, C.M., West, C.E.: DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. — New Phytol. 168: 511–528, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Brendler-Schwaab, S., Hartmann, A., Pfuhler, S., Speit, G.: The in vivo comet assay: use and status in genotoxicity testing. — Mutagenesis 20: 245–254, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Collins, A., Harrington, V.: Repair of oxidative DNA damage: assessing its contribution to cancer prevention. — Mutagenesis 17: 489–493, 2002.

    Article  CAS  PubMed  Google Scholar 

  • De Pinto, M.C., Tommasi, F., De Gara, L.: Enzymes of ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco bright yellow (BY-2 line). — Plant. Physiol. Biochem. 38: 541–550, 2000.

    Article  Google Scholar 

  • Djanaguiraman, M., Sheeba, J.A., Shanker, A.K., Devi, D.D., Bangarusamy, U.: Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. — Plant Soil 284: 363–373, 2006.

    Article  CAS  Google Scholar 

  • Drotar, A., Phelps, P., Fall, R.: Evidence for glutathione peroxidase activities in cultured plant cells. — Plant. Sci. 42: 35–40, 1985.

    Article  CAS  Google Scholar 

  • Edwards, R., Dixon, D.P., Walbot, V.: Plant glutathione-S-transferases: enzymes with multiple functions in sickness and in health. — Trends Plant. Sci. 5: 193–198, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M.: Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. — Physiol. Plant. 100: 241–254, 1997.

    Article  CAS  Google Scholar 

  • Ghoulam, C., Ahmed, F., Khalid, F.: Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. — Environ. exp. Bot. 47: 139–150, 2001.

    Google Scholar 

  • Hanson, A.D., Hitz, W.D.: Metabolic responses of mesophytes to plant water deficits. — Annu. Rev. Plant. Physiol. 33: 163–203, 1982.

    Article  CAS  Google Scholar 

  • Herbette, S., Lenne, C., Leblanc, N., Julien, J.L., Drevet, J.R., Roeckel-Drevet, P.: Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. — Eur. J. Biochem. 269: 2414–2420, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J.A., Linn, S.: DNA damage and oxygen radical toxicity. — Science 240: 1302–1309, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Jablonkai, I., Hatzios, K.: In vitro conjugation of chloroacetanillide herbicides and atrazine with thiol and contribution of non-enzymatic conjugation to their glutathione mediated metabolism in corn. — J. Agr. Food. Chem. 41: 1736–1742, 1993.

    Article  CAS  Google Scholar 

  • Khodary, S.E.A.: Effects of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. — Int. J. agr. Biol. 6: 5–8, 2004.

    CAS  Google Scholar 

  • Koppen, G., Verschaeve, L.: The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breakages in Vicia faba root cell. — Mutation Res. 360: 193–200, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Lin, A.-J., Zhang, X.-H., Chen, M.-M., Cao, Q.: Oxidative stress and DNA damages induced by cadmium accumulation. — J. environ. Sci. 19: 596–602, 2007.

    Article  CAS  Google Scholar 

  • Lopez, E., Arce, C., Oset-Gasque, M.J.: Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. — Free Radicals Biol. Med. 40: 940–951, 2006.

    Article  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. — J. biol. Chem. 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  • Ma, L.J., Yu, C.M., Li, X.M., Li, Y.Y., Wang, L.L., Ma, C.Y., Tao, S.Y., Bu, N.: Pretreatment with NaCl induces tolerance of rice seedlings to subsequent Cd or Cd + NaCl stresses. — Biol. Plant. 57: 567–570, 2013.

    Article  CAS  Google Scholar 

  • Mandhania, S., Madan, S., Sawhney, V.: Antioxidant defence mechanism under salt stress in wheat seedlings. — Biol. Plant. 50: 227–231, 2006.

    Article  CAS  Google Scholar 

  • Marrs, K.A.: The function and regulation of glutathione-S-transferases in plants. — Annu. Rev. Plant. Physiol. Plant. mol. Biol. 47: 127–158, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl, D.G., Moreno-Sánchez, R.: Control of glutathione and phytochelatin synthesis under cadmium stress: pathway modeling for plants. — J. theor. Biol. 238: 919–936, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Misra, N., Dwivedi, U.N.: Genotypic difference in salinity tolerance of green gram cultivars. — Plant Sci. 166: 1135–1142, 2004.

    Article  CAS  Google Scholar 

  • Misra, N., Murmu, B., Singh, P., Misra, M.: Growth and proline accumulation in mungbean seedlings as affected by sodium chloride. — Biol. Plant. 38: 531–536, 1996.

    Article  CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidant and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., Soave, C.: Arabidopsios thaliana plants overexpressing thylakoidal ascorbate peroxidise show increased resistance to paraquat-induced photooxidative stress and to nitric oxide -induced cell death. — Plant. J. 38: 940–953, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Nandwal, A.S., Godara, M., Sheokand, S., Kamboj, D.V., Kundu, B.S., Kuhad, M.S., Kumar, B., Sharma, S.K.: Salinity induced changes in plant water status, nodule functioning and ionic distribution in phenotypically differing genotype of Vigna radiata L. — J. Plant. Physiol. 156: 352–359, 2000.

    Article  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthetis, compartmentation and transport in the control of glutathione homeostasis and signalling. — J. exp. Bot. 53: 1283–1304, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Panda, B.B., Panda, K.K.: Genotoxicity and mutagenicity of heavy metals in plants. — In Prasad, M.N.V., Strzalka, K. (ed.): Physiology and Biochemistry of Metal Tolerance in Plants. Pp. 395–414. Kluwer Academic Publishers, Amsterdam 2002.

    Chapter  Google Scholar 

  • Panda, S.K., Upadhyay, R.K.: Salt stress injury induces oxidative alteration and antioxidative defence in the roots of Lemna minor. — Biol. Plant. 48: 249–253, 2003.

    Article  Google Scholar 

  • Pessarakli, M., Szaboles, I.: Soil salinity and sodicity as particular plant/crop stress factor. — In: Pessarakli, M. (ed.) Handbook of Plant and Crop Stress. Pp. 1–16. Marcel Dekker, New York 1999.

    Chapter  Google Scholar 

  • Procházková, D., Wilhelmová, N., Pavlíková, D., Száková, J., Gichner, T.: Zinc induces DNA damage in tobacco roots. — Biol. Plant. 57: 783–787, 2013.

    Article  Google Scholar 

  • Promila, K., Kumar, S.: Vigna radiata seed germination under salinity. — Biol. Plant. 43: 423–426, 2000.

    Article  CAS  Google Scholar 

  • Ranieri, A., Castagna, A., Lorenzini, G., Soldatini, G.F.: Changes in thylakoid protein patterns and antioxidant levels in two wheat cultivars with different sensitivity to sulphur dioxide. — Environ. exp. Bot. 37: 125–135, 1997.

    Article  CAS  Google Scholar 

  • Rauser, W.E.: Structure and functions of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. — Cell. Biochem. Biophys. 31: 19–48, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants. — Phytochemistry 21: 2771–2781, 1982.

    Article  CAS  Google Scholar 

  • Rennenberg, H.: Processes involved in glutathione metabolism. — In: Wallsgrove, R.M. (ed.): Amino Acids and Their Derivatives in Plants Biosynthesis and Metabolism. Pp. 155–171. Cambridge University Press, Cambridge 1995.

    Chapter  Google Scholar 

  • Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R., Allen, R.D.: Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidise. — Plant cell. Physiol. 41: 1229–1234, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Saha, P., Chatterjee, P., Biswas, A.K.: NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). — Indian J. exp. Biol. 48: 593–600, 2010.

    CAS  PubMed  Google Scholar 

  • Saha, P., Kunda, P., Biswas, A.K.: Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings. — Plant. Physiol. Biochem. 60: 214–222, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sedlak, J., Lindsay, R.H.: Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue by Ellman’s reagent. — Anal. Biochem. 25: 192–208, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L.: A simple technique for quantification of low levels of DNA damage in individual cells. — Exp. cell. Res. 175: 184–191, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis-(2-nitrobenzoic acid). — Anal. Biochem. 175: 408–413, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., Toshio, S., Masanori, T., Nobuyoshi, N., Noriaki, K., Hasezawa, S.: Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. — Plant. Physiol. 138: 2337–2343, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Umezawa, T., Shimizu, K., Kato, M., Ueda, T.: Enhancement of salt tolerance in soybean with NaCl pretreatment. — Physiol. Plant. 110: 59–63, 2000.

    Article  CAS  Google Scholar 

  • Yoon, H.S., Lee, I.A., Lee, H., Lee, B.H., Jo, J.: Over expression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. — Biochem. biophys. Res. Commun. 326: 618–623, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M., Facchini, P.J.: Molecular cloning and characterization of a type 3 glutathione S-transferase from cell suspension cultures of opium poppy treated with fungal elicitor. — Physiol. Plant. 108: 101–109, 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Biswas.

Additional information

Acknowledgements: This study was supported financially by a Research Project grant from the University Grants Commission, New Delhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Mukherjee, A. & Biswas, A.K. Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose. Biol Plant 59, 139–146 (2015). https://doi.org/10.1007/s10535-014-0460-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0460-3

Additional key words

Navigation