Skip to main content

Abstract

Metals are ubiquitous in nature. Metals are emitted from a wide spectrum of natural and man-made sources such as volcanic eruption, mining, fossil burning, industrial emissions and automobile exhausts and sewage disposals. Distribution of metals in the environment, however, is uneven (Moore and Ramamoorthy 1984, Nriagu and Pacyna 1988, Nriagu 1990). Upon entering into the environment in a variety of organic and inorganic forms and being neither degradable nor recoverable, metals get incorporated into biogeochemical cycles where they can exert long-term effect (Nriagu 1990). The problem of metal pollution is a global phenomenon. This, however, is accentuated in third world countries that have been offering the dumping grounds for toxic wastes and have become the hot spots of metal pollution because of population explosion coupled with poor economic conditions, use of outdated technologies in industries and lack of stringent anti-pollution laws (Anonymous 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg, J., Ramel, C., and Wachmeister, C. A. (1972) Organolead compounds shown to be genetically active, Ambio 1, 29.

    CAS  Google Scholar 

  • Albinsky, D., Masson, J. E., Bagucki, A., Afsar, A., Vasa, 1., Nagy, F. and Paszowski, J (1999) Plant responses to genotoxic stress are linked to an ABA/salinity signaling path way, The Plant Journal 17, 7382.

    Google Scholar 

  • Alscher, R. G. (1989) Biosynthesis and antioxidant function of glutathione in plants, Physiologia Plantarum 77, 457–464

    Article  CAS  Google Scholar 

  • Anderson, O. (1986) Evaluation of spindle inhibiting effects of metals on chromosome length measurement, Toxicolocgical and Environmental Chemistry 12 195–213.

    Article  Google Scholar 

  • Anderson, S. L., Shugart, L. R. and Suk, W.H. (1994) Napa Conference on Genetic and Molecular Ecotoxicology, Environmental Health Perspectives lU (Supplement 12 ), 1–108.

    Google Scholar 

  • Anderson, D., Dobrzynska, M. M. and Basaran, N. (1997) Effect of various genotoxins in human lymphocytes and sperm in the comet assay, Teratogenesis, Carcinogenesis and Mutagenesis 17, 29–43.

    Google Scholar 

  • Anonymous (1991) Toxic terror: dumping of hazardous wastes in the third world, Third Wald Net Work, Penang.

    Google Scholar 

  • Betti, C., Barale, R. and Pool-Zobel, B. B. (1993) Comparative studies an cytotoxic and genotoxic effects of two organic mercury compounds in lymphocytes and gastric mucosa cells of Sprague-Dawley rats, Environmental and Molecular Mutagenesis 22: 172–180

    Google Scholar 

  • Beyersmann, D. (1994) Interaction in metal carcinogenicity, Toxicology Letters 72, 333–338.

    Google Scholar 

  • Briat, J-F. and Lebrun, M (1999) Plant responses to metal toxicity, C. R. Academié des Sciences/Life Sciences, 322, 43–54.

    Google Scholar 

  • Blasiak, J. and Kowalik, J. (2000) A comparison of the in vitro genotoxicity of tri-and hexavalent chromoium, Mutation Research 469, 135–145

    Google Scholar 

  • Borboa, L. and De la Torre, C. (1996) The geonotoxicity of Zn (II) and Cd(II) in Allium cepa root meristematic cells, New Phytologist 134, 481–486.

    Google Scholar 

  • Bowler, C. and Fuhlr, R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance, Trends in Plant Science 5, 241–246.

    Google Scholar 

  • Bretaguolle, F. and Thompson, J. D. (1995) Tansley Review No. 78. Gamets with the somatic chromosome number: mechanism of their formation and role in evolution of autopolyploid plants, New Phytologist 129, 1–22

    Google Scholar 

  • Briat, J-F. and Lebrun, M. (1999) Plant responses to metal toxicity, Comptes Rendus de l’Academie des Sciences/ Life Sciences, 322, 43–54.

    Google Scholar 

  • Burton, M. A. S. (1986) Biological monitoring of environmental contaminants, a technical report, M. A. R. C., London.

    Google Scholar 

  • Chaoui, A., Mazhoudi, M. H., Ghorbal, S. and Ferjani, E. E. (1997) Cadmium and zinc induction of lipid peroxidation and effect on antioxidant enzyme activities in bean (Paseolus vulgaris L.), Plant Science 127, 139–147

    Article  CAS  Google Scholar 

  • Cho, U.-H and Park, J. O. (2000) Mercury induced oxidative stress in tomato seedlings, Plant Science 156, 19

    Article  Google Scholar 

  • Clemens, S., Kim, E. J., Neumann, D. and Schroeder, J. I. (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, EMBO Journal. 18, 3325–3333

    Google Scholar 

  • Cobbett, C. S. (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification, Current Opinion in Plant Biology 3’ 211–216

    Google Scholar 

  • Constantin, M. J. and Nilan, R. A. (1982a) Chromosome aberration assays in barley (Hodreum vulgare), A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 13–36.

    Google Scholar 

  • Constantin, M. J. and R. A. Nilan (1982b) The chlorophyll-deficient mutant assay in barley (Hordeum vulgare),A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 37–40

    Google Scholar 

  • Coogan, T. P., Bare, R., M. Bjornson, E. J., Walkes, M. P. (1994), Enhanced metallothionein gene expression is associated with protection for cadmium-induced genotoxicity in cultured rat liver cells, Journal Toxicology and Environmental Health 41, 233–245.

    Google Scholar 

  • Cortes, F., Daza, P., Pinero, J. Escalza, P., (1994) Evidence that SCEs induced by mutagens do not occur at the same locus in successive cell cycle: lack of cancellation in three way stained CHO chromosomes, Environmental Molecular Mutagenesis 24, 203–207.

    Google Scholar 

  • Cotelle, S. and Ferard, J. F. (1999) The comet assay in genetic toxicology, Environmental and Molecular Mutagenesis 34, 246–255.

    Google Scholar 

  • Cuypers, A., Vangronsveld, J. and Clijsters, H (2001) The radox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris, Plant Physiology and Biochemistry 39, 657–664.

    Google Scholar 

  • Dash, S., Panda, K. K. and Panda, B. B. (1988) Biomonitoring of low levels of mercurial derivatives in water and soil by Allium micronucleus assay, Mutation Research 203, 11–21.

    Google Scholar 

  • Degrassi, F. and Rizzoni, M. (1982) Micronucleus test in Vicia faba root tips to detect mutagen damage in fresh water pollution, Mutation Research 97, 19–33.

    Google Scholar 

  • de Raat, W. K., Vink, G.J. and Hnstveit, A. O. (1990) The significant of mutagenicity as a criterion in ecotoxicological evaluations, in M. D. Waters (ed.) Genetic Toxicology of Complex Mixtures, Plenum Press, New York, pp. 249–267.

    Chapter  Google Scholar 

  • De Vos, C.H.R., Vonk, M.J., Vooijs, R. and Schat, H. (1992) Glutathione depletion due to Copper-induced phytochelatin synthesis cause oxidative stress in Silene cucbalus, Plant physiology 98, 853–858.

    Google Scholar 

  • Dietz, K.-J, Bair, M. Kramer, U. (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants, in M.N.V. Prasad and J. Hagemeyer (eds.) Heavy Metal Stress in Plants–From molecules to Ecosystems, Springer-Verlag, New York, pp. 73–97.

    Chapter  Google Scholar 

  • Dineva, S. B. Abramov, V. I. And Shevchenko, V. A. (1993) Genetic effects of lead nitrate on seeds of chronically irradiated populations of Arabidopsis thaliana, Genetika 29, 1914–1920

    Google Scholar 

  • Dixon, D. P., Cummins, I. Cole, D. J. and Edwards, R. (1998) Glutathione-mediated detoxification systems in plants, Current Opinion in Plants Biology 1, 258–266.

    Google Scholar 

  • Duan, C., Hu, B., Guo, T., Luo, M., Xu, X., Chang, X., Wen, C., Meng, L., Yang, L. and Wang, H. (2000) Changes of reliability and efficiency of micronucleus bioassay in Vicia faba after exposure to metal contamination for several generations, Environmental and Experimental Botany 44, 83–92.

    Google Scholar 

  • Dudka, S. and Miller, W. P. (1999) Accumulation of potential toxic elements in plants and their transfer to human food chain, Journal of Environmental Science and Health B34 681–708.

    Google Scholar 

  • Ennever, F. K., Andreano, G. And Rosenkranz, H. S. (1986) The ability of plant genotoxicity assays to predict carcinogenicity, Mutation Research 205, 99–105

    Google Scholar 

  • Grant, W. F. (1994) The present status of higher plant bioassays for the detection of environmental mutagens, Mutation Research 310, 175–183

    Google Scholar 

  • Ezaki, B., Gardner, R. C., Ezaki, Y. and Matsumoto, H. (2000) Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress, Plant Physiology 122, 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Fairbain, D. W., Olive, P. L. and O’Neill, K. L. (1995) The comet assay: a comprehensive review, Mutation Research 339, 37–59.

    Article  Google Scholar 

  • Fiskesjo, G., (1969) Some results from Allium tests with organic mercury halogenides, Hereditas 62, 314–322

    Google Scholar 

  • Fiskesjo, G., (1979) Mercury and selenium in a modified Allium test, Hereditas 91, 169–178.

    Google Scholar 

  • Fiskesjo, G. (1988) The Allium test - an alternative in environmental studies: the relative toxicity of metalions, Mutation Research 197 243–260.

    Google Scholar 

  • Fiskesjo, G. (1997) Allium test for screening chemicals; evaluation of cytological parameters, in W. Wang, J. W. Gorsush and J. S. Hughes (eds.) Plants for Environmental Studies, Lewis CRC Publishers, Boca Raton, FL, pp. 309–333.

    Google Scholar 

  • Foley, R. C., Liang, Z. M. and Singh, K. B. (1997) Analysis of type 1 metallothionein cDNAs in Vicia faba, Plant Molecular Biology 33, 583–91.

    Google Scholar 

  • Flessel, C. P. (1977) Metal as mutagens, Advances in Experimental Medicine and Biology 91, 117–128

    Google Scholar 

  • Fortini, P., Raspaglio, G., Falchi, M. and Doglioti, E. (1996) Analysis of DNA alkylation damage and repair in mammalian cells by the comet assay, Mutagenesis 11, 169–175

    Google Scholar 

  • Foy, C. D., Chaney, R. L. And White, (1978) The physiology of metal toxicity in plants, Annual Review of Plant Physiology 29, 511–566

    Google Scholar 

  • Frenzilli, G., Bosco, E and Berale, R. (2000) Validation of single cell gel assay in human leukocytes with 18 reference compounds, Mutation Research 468, 93–108.

    Google Scholar 

  • Gaulden, M. E. (1987) Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripherial proteins) to produce chromosomal aberrations, Mutagenesis 2, 357–365.

    Google Scholar 

  • Gichner, T. Badyev, S. I. Demchenko, J. Relichova, J., Sandhu, S. S., Usmanov, P. D., Usmanova, O. and Veleminsky, J. (1994) Arabidopsis assay for mutagesis, Mutation Research 310, 249–256.

    Google Scholar 

  • Gichner, T. and Plewa, M. J. (1998) Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants, Mutation Research 401, 143–152.

    Google Scholar 

  • Gopalan, H. N. B. (1999) Ecosystem health and human well being: the mission of the international programme of plant bioassays, Mutation Research 426 99–102.

    Google Scholar 

  • Grant, W. F. (1982) Chromosome aberration assays in Allium, A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 273–291.

    Google Scholar 

  • Grant, W. F. (1994) The present status of higher plant bioassays for the detection of environmental mutagens, Mutation Research 310,175-183.

    Google Scholar 

  • Grant, W. F. (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutations - a brief historical background on their use for screening and monitoring environmental chemicals, Mutation Research 426 107–112.

    Google Scholar 

  • Grant, W. F. and Owens, E. T. (1998) Chromosome aberration assays in Crepis for study of environmental mutagens, Mutation Research 410, 291–307

    Google Scholar 

  • Grillo, C. A. Seoane, A. I and Dulout, F. N. (1999) Protective effect of butylated hydroxytoluene (BHT) agaist the clasogenic activity of cadmium chloride and potassium dichromate in Chinese hamster ovary cells, Genetics and Molecular Biology 22, 59–64.

    Google Scholar 

  • Hamer, D. H. (1986) Metallothioneins, Annual Review of Biochemistry 55, 913–951

    Google Scholar 

  • Hartmann, A. and Speit, G. (1994) Comparative investigation of the genotoxic effect of metals in single cell (SSG) assay and the sister chromatid exchange (SCE) test, Environmental and Molecular Mutagenesis 23, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, A. and Speit, G. (1996) Effect of arsenic and cadmium on the persistence of mutagen-induced DNA lesions in human cells, Environmental and Molecular Mutagenesis 27, 98–104.

    Google Scholar 

  • Hartwig, A (1995) Current aspects in metal genotoxicity, Biometal 8, 3–11

    Google Scholar 

  • Horvathova, E., Slameova, D., Hlinikova, L., Mandai, T. K., Gabelova, A. and Collins, A. R. (1998) The nature and origin of DNA single-stranded breaks determined with comet assay, Mutation Research 409, 163–171.

    Google Scholar 

  • Houk, V. S. (1992) The genotoxicity of industrial wastes and effluents, Mutation Research 277, 91–138.

    Google Scholar 

  • Hu, Y., Su, L. and Snow, E. T. (1998) Arsenic toxicity is enzyme specific and its effects are not caused by the direct inhibition of DNA repair enzymes, Mutation Research 408 203–218

    Google Scholar 

  • Jha, A. N., Noditi, M., Nilsson, R. and Natarajan, A. T. (1992) Genotoxic effects of sodium arsenite on human cells, Mutation Research 284 215–221.

    Google Scholar 

  • Kanaya, N. Gill, B. S., Grover, I S., Murin, A. Osiecka, R., Sandhu, S. S. and Andersson, H. C. (1994) Vicia faba chromosomal aberration assay, Mutation Research 310, 231–248.

    Google Scholar 

  • Khus, G. S. (1973) Cytogenetics ofAneuploids, Academic Press, New York.

    Google Scholar 

  • Kihlman, B. A. (1971) Root tips for studying the effects of chemicals on chromosomes, in A. Hollaender (ed.) Chemical Mutagnes Vol. 2, Plenum Press, New York, pp. 489–514.

    Chapter  Google Scholar 

  • Kihlman, B. A. (1975) Root tips of Vicia fava for the study of the induction of chromosomal aberrations, Mutation Research 3, 401–412.

    Article  Google Scholar 

  • Kihlman, B. A. and Kornberg, D. (1975) Sister chromatid exchanges in Vicia faba, demonstrated by a modified fluorescent plus giemsa technique (FPG) technique, Chromosoma 51, 1–10.

    Google Scholar 

  • Knasmuller, S., Gottamann, E., Steinkellner, H., Forain, A., Pickel, C. Paschke, A. God, R. and Kundi, M. (1998) Detection of genotoxicity effects of heavy metal contaminated soils with plant bioassays, Mutation Research 420 37–48.

    Google Scholar 

  • Koppen, G. and Verschaeve, L. (1996) The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cells, Mutation Research 360, 193–200.

    Google Scholar 

  • Kovalchuk, I., Kovalchuk, O. and Hohn, B. (2001) Biomonitoring the genotoxicity of environmental factors with transgenic plants, Trends in Plant Science 6, 7306–7310.

    Google Scholar 

  • Latt, S. A., Allen, J., Bloom, S. E., Carrano, A., Falke, E., Kram, D., Schneider, E., Schreck, R., Tice, R., Whitefield, B. And Wolff, S. (1981) Sister chromatid exchange: a report of the Gene-Tox Program, Mutation Research 87, 17–62.

    Google Scholar 

  • Lerda, D. (1992) The effect of lead on Allium cepa L., Mutation Research 281, 89–92.

    Google Scholar 

  • Liu, D., Jiang, W. and Li, M. (1992) Effect of trivalent and hexavalent chromium on root growth and cell division of Allium cepa, Hereditas 117, 23–29.

    Google Scholar 

  • Liu, D. Jiang, W., Wang, W. and Zhai, L (1995) Evaluation of metal ion on root tip cells by the Allium Test, Israel Journal of Plant Sciences 43, 125–133.

    Google Scholar 

  • Lloyd, D. R. and Phillips, D. H. Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reaction: evidence for site-specific mechanisms in the formation of double-strand breaks, 8hydroxydeoxyguanosine and putative intrastrand-links, Mutation Research, 424 23–36.

    Google Scholar 

  • Logan, T. J. And Traîna, S. J. (1993) Trace metals in agricultural soils, in H. E. Allen, E. M. Perdue and D. S. Brown (eds.), Metals in Groundwater, Lewis Publishers, Boca Raton, pp. 309–347.

    Google Scholar 

  • Lower, W. R. and Kendeall, R. J. (1990) Sentinel species and sentinel bioassay, in J. F. McCarthy and L. R. Shugart (eds.) Biomarkers of Environmental Contamination, Lewis CRC Publishers, Boca Raton, FL, pp. 309–331.

    Google Scholar 

  • Luo, H., Lu, Y., Shi, X., Mao, Y. and Dalai, N.S. (1996) Chromium (IV)-mediated fenton-like reaction causes DNA damage: implication to genotoxicity of chromate, Annals of Clinical Laboratory Science 26, 185–191.

    Google Scholar 

  • Ma, T.-H. (1982a) Vicia cytogeneitc tests for environmental mutagens, A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 257–271.

    Google Scholar 

  • Ma, T-H., (1982b) Tradescantia micronuclei (Trad-MCN) test for environmental clastogens, in A. R. Kolber, T. K. Wong, L. D. Grant, R. S. DeWoskin and T. J. Hughes (eds.) In Vitro Toxicity Testing of Environmental Agents, Part A, Plenum Press, New York, pp. 191–214.

    Google Scholar 

  • Ma, T-H. (1999) The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China, Mutation Research 426,103–106.

    Google Scholar 

  • Ma, T-H., Cabera, G. L., Chen, R., Gill, B. S. Sandhu, S. S., Vanderberg, A. L. and Salmone, M. F. (1994a) Tradescantia micronucleus bioassay, Mutation Research 310, 221–230.

    Google Scholar 

  • Ma, T-H., Cabera, G. L. Cebulska-Wasilewaska, A., Chen, R. Loarca, F. Vanderberg, A. L. and Salmone, M. F. (1994b) Tradescantia stamen hair mutation bioassay, Mutation Research 310, 211–220

    Google Scholar 

  • Ma, T-H., Zhidong, X., Xu, C., McConnell, H., Rabago, E. V. Arreola, G. A. and Zhang, H. (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants, Mutation Research 334, 185–195

    Google Scholar 

  • Mazhoudi, S. and Chaoui, A, Ghorbal, M. H. and Ferjani, E. E. (1997) Response of antioxidant enzymes toexcess copper in tomato (Lycopersicum esculantum, Mill), Plant Science 127, 129–137.

    Google Scholar 

  • McClintock, B. (1965) The control of gene action in maiz, Brookhaven Symposium in Biology 26, 305–309.

    Google Scholar 

  • Mehera, A. and Farago, M.E. (1994) Metal ions and plant nutrition, in M. E. Farago (ed.) Plants and the Chemical Elements: Biochemistry, Uptake Tolerance and Toxicity, VCH, Weinheim, pp. 32–66.

    Google Scholar 

  • Minissi, S. and Lombi, E. (1997) Heavy metal content and mutagentic activity, evaluated by Vicia faba micronucleus test, of Tiber river sediments, Mutation Research 393, 17–21.

    Google Scholar 

  • Moore, R. C. and Bender, M. A. (1993) Time sequence of events leading to chromosomal aberration formation, Environmental and Molecular Mutagenesis 22, 208–213

    Google Scholar 

  • Moore, J. W. and Rammoorthy, S. (1984) Heavy Metals in Natural Waters,Springer-Verlag, New York. Mukherjee, A. and Sharma, A. (1986) Effects of cadmium chloride and sodium selenite on plant chromosomes, Perspectives in Cytology and Genetics 5, 325–328

    Google Scholar 

  • Navarrete, M. H. Carrera, P, de Miguel, M. and de la Torre, C. (1997) A fast comet assay for solid tissue cells. The assessment of DNA damage in higher plants. Mutation Research 389, 271–277.

    Google Scholar 

  • Newcombe, H. B. (1979) Measuring the public health impact of the aneuploids, Environmental Health Perspectives 31, 3–8.

    Google Scholar 

  • Nicoloff, H. and Gecheff, K (1976) Methods of scoring induced chromosome structural changes in barley, Mutation Research 34, 233–244.

    Google Scholar 

  • Nriagu, J. O. (1990) Global metal pollution; poisoning the biosphere, Environment 32, 7–32

    Article  Google Scholar 

  • Nriagu, J. O. and Pacyna, J. M. (1988) Quantitative assessment of worldwide contamination of air, water and soils with trace metals, Nature 333, 134–139.

    Google Scholar 

  • Ochi, T., Ishugura, T. and Osawa, M. (1983) Participation of active oxygen species in the induction of DNA single strand scissions by cadmium chloride in cultured Chinses hamster cells, Mutation Research 122, 169–175.

    PubMed  CAS  Google Scholar 

  • Ochi, T. and Oshawa, M. (1985) Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells, Mutation Research 143, 137–142.

    Google Scholar 

  • Onfelt, A. (1983) Spindle disturbances in mammalian cells. I. Changes in the quantity of free sulfhydril groups in relation to survival and c-mitosis in V79 Chinese hamster cells after treatment with colcemid, diamide, carbaryl and methyl mercury, Chemico-Biological Interactions 46, 201–217.

    Google Scholar 

  • Oshimura, M. and Barrett, J. C. (1986) Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer, Environmental Mutagensis 8, 129–159.

    Google Scholar 

  • Panda, B. B. A. V. Subhadra, and Panda, K. K. (1995) Prophylaxis of antioxidants against the genotoxicity of methyl mercuric chloride and maleic hydrazide in Allium micronucleus assay, Mutation Research 343, 75–84.

    Google Scholar 

  • Panda, B. B., Patna, J. and Panda, K. K. (2000) Cadmium-induced adaptive response in plant cells in vivo: A possible model based on genotoxicity studies, in: M. Yunus, N. Singh and L. J. Dekok Eds., Pollution Stress: Indication, Mitigation and Eco-conservation, Kluwer Academic Publication, Amsterdam, pp. 173–184.

    Google Scholar 

  • Panda, K. K., Lenka, M. and Panda, B. B. (1989) Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of L-cysteine, The Science of the Total Environment 79, 25–36.

    Google Scholar 

  • Panda, K. K., Lenka, M. and Panda, B. B. (1990) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant I. Distribution, availability and genotoxicity of sediment mercury in the Rushikulya estuary, India, The Science of the Total Environment 96, 281–296.

    Google Scholar 

  • Panda, K. K., Lenka, M. and Panda, B. B. (1992a) Monitoring and assessment of mercury pollution in the vicinity of a choralkali plant. II Plant-availability, tissue-concentration and genotoxicity of mercury from agricultural soil contaminated with solid waste assessed in barley (Hordeum vulgare L.), Environmental Pollution 76, 33–42.

    Google Scholar 

  • Panda, K. K., Lenka, M. and Panda, B. B. (1992b) Monitoring and assessment of of mercury pollution in the vicinity of a chloralkali plant III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India, Mutation Research 280 149–160.

    Google Scholar 

  • Panda, K. K., Patna, J. and Panda, B. B. (1996) Induction of sister chromatid exchanges by heavy metal salts in root meristem cells of Allium cepa L., Biologic Plantarum 38, 555–561.

    Google Scholar 

  • Panda, K. K., Patna, J. and Panda, B. B. (1997) Persistence of cadmium-induced adaptive response against genotoxicity of maleic hydrazide and methyl mercuric chloride in root meristem cells of Allium cepa L. Differential inhibition by cycloheximide and buthionine sulfoximine, Mutation Research 389, 129–139.

    Google Scholar 

  • Panda, K. K., Sahu, U. K. and Panda, B. B. (1998) A new haematoxylin procedure for differential staining of sister chromatid exchanges in root meristem cells of Allium cepa, Cytobios 93, 113–121.

    Google Scholar 

  • Papper, I. Galaniti, N., Sans, J. and Lopez-Saez, J. F. (1998) Reversible inhibition of root growth and cell proliferation by pentavalent arsenic in Allium cepa L., Environmental and Experimental Botany 28, 9–18.

    Google Scholar 

  • Patna, J. and Panda, B. B. (1998) A comparision of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environmental Pollution 101, 99–105.

    Google Scholar 

  • Patna, J., Panda, K. K. and Panda, B. B. (1997) Differential induction of adaptive response by paraquat and hydrogen peroxide against genotoxicity of methyl mercuric chloride, maleic hydrazide and ethyl methane sulfonate in plant cells in vivo, Mutation Research 393, 215–222.

    Google Scholar 

  • Patna, J., Baisakhi, B., Mohapatro, M. K. and Panda, B. B. (2000) Aluminium triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in plant cells in vivo, Mutation Research 465 1–9.

    Google Scholar 

  • Plewa, M. J. (1982) Specific-locus mutation assays in Zea mays, A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 317–337..

    Google Scholar 

  • Plewa, M. J. (1985) Plant genetic assays and their use in studies on environmental mutagenesis in developing countries, in A. Muhammed and R. C. von Borstel (eds.) Basic and Applied mutagenesis. With Special Reference to Agricultural Chemicals in Developing Countries, Plenum press, New York, pp. 249–268.

    Google Scholar 

  • Poli, P Buschini, A, Restivo, M. F., Ficarelli, A, Cassino, F., Ferrero, I. And Rossi, C. (1999) Comet assay application in environmental monitoring: DNA damage in human leukocytes, and plant cells in comparison with bacterial and yeast tests, Mutagenesis 14, 547–555.

    Google Scholar 

  • Pool-Zobel, B. L., Lotzmann, N., Knoll, M., Kuchenmeister, F., Lambertz, R. Leucht, U. And Schroder, H.-G. And Schmezer, P. (1994) Detection of genotoxic effects of human gastric and nasal mucosa cells isolated from biopsy samples, Environmental and Molecular Mutagenesis 24, 23–45.

    Google Scholar 

  • Prasad, K. V. S. K., Saradhi, P. P. and Sharmila, P. (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncia, Environmental Experimental Botany 42 1–10.

    Google Scholar 

  • Prasad, M. N. V. (1997) Trace metals, in M. N. V. Prasad (ed.) Plant Ecophysiology, John-Wiley, New York, pp 263–273.

    Google Scholar 

  • Ramel, C. (1969) Genetic effects of organomercury compounds, 1. Cytological investigation on Allium root, Hereditas 61, 208–230.

    Google Scholar 

  • Rank, J. and Nielson, M. H. (1993) A modified Allium test as a tool in screening of the genotoxicity of complex mixtures, Hereditas 118, 49–53

    Google Scholar 

  • Rank, J. and Nielson, M. H. (1994) Evaluation of Allium ana hase-telophase test in relation to genotoxicity screening of industrial waste water, Mutation Research 312, 17–24.

    Google Scholar 

  • Rank, J. and Nielsen, M. H. (1998) Genotoxicity of waste water sludge using the Allium cepa chromosome anaphase-telophase aberration assay, Mutation Research 418, 113–119

    Google Scholar 

  • Reddy, N. M., Panda, K. K. Subhadra, A. V. and Panda, B. B. (1995) The Allium micronucleus (MNC) assay may used to distinguish clastogens from aneugens, Biologishes Zentralblatt 144, 358–368

    Google Scholar 

  • Reddy, T. P. and Vaidyanath, K. (1978) Synergistic interaction of gamma rays and some metallic salts in the induction of chlorophyll mutations in rice, Mutation Research 52, 361–365.

    Google Scholar 

  • Redei, G. P. (1982) Mutagen assay with Arabidopsis, A report of the US Environmental Protecion Agency Gene-Tox Program, Mutation Research 99, 243–255.

    Google Scholar 

  • Rojas, E., Valverde, M., Herrera, L. A., Altrarmirano-Lozano, M. and Ostrosky-Wegman, P (1996) Genotoxicity of vanadium pentoxide evaluated by the single cell gel electrophoresis assay in human lymphocytes, Mutation Research 360 193–200.

    Google Scholar 

  • Rossman, T. G., Zelikof, J. T. Agarwal, S. and Kneip, T. J. (1987) Genetic toxilogy of metal compounds: an examination of appropriate cellular models, Toxioclogy and Environmental Chemistry 14, 251–262.

    Google Scholar 

  • Roy, N. K. and Rossman, T. G. (1992) Mutgenicity and comutagenicity by lead compounds, Mutation Research 298, 97–103.

    Google Scholar 

  • Ruposhev, A. R. (1976) The cytogenetic effect of heavy metal ions on seed of Crepis capillaris L., Genetika 12,37–43

    Google Scholar 

  • Sahu, R. K. Katsifis, S. P., Kinney, P. L. and Christie, N. T. (1989) Effect of nickel sulphate, lead sulphate and sodium arsenite alone and with UV light on sister chromatid exchanges in cultured human lymphocytes, Journal of Molecular Toxicology 2, 129–136.

    Google Scholar 

  • Sahu, R. K., Katsifis, S. P., Kinney, P. L. and Christie, N. T. (1995) Ni (II) induced changes in cell cycle duration and sister-chromatid exchanges in cultured human lymphocytes, Mutation Research 327, 217–225.

    Google Scholar 

  • Sandhu, S. S. and Lower, W. R. (1989) In situ assessment of genotoxic hazard of environmental pollution, Toxicology and Industrial Health 5, 61–69.

    Google Scholar 

  • Sandhu, S. S., Vig, B. K. and Constantin, M. J. (1986) Detection of chemically induced aneuploidy induction with plant test systems, Mutation Research 167, 61–69.

    Google Scholar 

  • Sandhu, S. S., De Marini, D., Mass, M. J., Moore, M. M. and Mumford, J. L. (1987) Short-Term Assays in the analysis of Complex Environmental Mixtures, Plenum Press, New York.

    Google Scholar 

  • Sanità di Toppi, L. and Gabbrieli, R. (1999) Responses to cadmium in higher plants, Environmental and Experimental Botany 41, 105–130.

    Article  Google Scholar 

  • Schubert, I (1994) Sister chromatid exchanges in Nicotiana plumbaginiflia, Biologisches Zentralblatt 113, 487–491.

    Google Scholar 

  • Schvartzman, J. B. (1987) Sister chromatid exchanges in higher plant cells: past and perspectives, Mutation Research 181,127–145.

    Google Scholar 

  • Schvartzman, J. B. and Cortes, F. (1977) Sister chromatid exchanges in Allium cepa L. Chromosoma 62, 119–131

    Google Scholar 

  • Shaw, B. P. (1995) Effect of mercury and cadmium on the activities of antioxidant enzymes in the seedling of Phaseolus aureus, Biologia Plantarum 37,587–596.

    Google Scholar 

  • Shelby, M, D. (1976) Chemical mutagenesis in plants and mutagenicity of plant related compounds, Environmental Mutagen Information Center, Oak Ridge.

    Google Scholar 

  • Singh, N.P., McCoy M.T., Tice, R.R. and Schneider, E.L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells, Experimental Cell Research 175, 184–191.

    Google Scholar 

  • Snyder, R. D. (1988) The role of active oxygen species in metal induced DNA strand breakage in human deploid fibroblasts, Mutation Research 193,237–246.

    Google Scholar 

  • Steffens, J. C. (1990) The heavy metal binding peptides of plants, Annual Review of Plant Physiology and Molecular Biology 41, 553–575.

    Google Scholar 

  • Steinkeliner, H., Mun-Sik, K, Helma, C, Ecker, S., Ma, T.-H., Horak, O., Kundi, M. and Knasmuller, S. Genotoxic effects of heavy metals: Comparative investigation with plant bioassays, Environmental and Molecular Mutagenesis 31 183–191.

    Google Scholar 

  • Stohs, S. J. and Bagcchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions, Free Radical Biology and Medicine 18, 321–326.

    Google Scholar 

  • Subhadra, A. V. and Panda, B. B. (1994) Metal-induced genotoxic adaptation in barley (Hordeum vulgare L.) to maleic hydrazide and methyl mercuric chloride, Mutation Research 321, 93–102.

    Google Scholar 

  • Subhadra, A.V., Panda, K.K. and Panda, B.B. (1993) Residual mercury in seeds of barley (Hordeum vulgare L.) confres genotoxic adaptation to ethyl methane sulfonate, Maleic hydrazide, methyl mercuric chloride and mercury contaminated soil, Mutation Research 300 141–149.

    Google Scholar 

  • Templaar, M. J. De Both, M. T. J. and Verteegh, J. E. G. 1982 Measurement of SCE frequencies in plants: a simple Feulgen-staining procedure of Vicia faba, Mutation Research 103, 322–326.

    Google Scholar 

  • Thomalley, P. J. and Vasak, M., (1985) Possible role of metallothionein in protection against radiation-induced oxidative stress. Kinetics, and mechanism of its reaction with superoxide and hydroxyl radicals, Biochimica Biophysica Acta 827, 36–44.

    Google Scholar 

  • Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartman, A., Kobayashi, H. Miyamae, Y., Rojas, E., Ryu, J.-C. and Sasaki, Y. F. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicligical testing, Environmental and Molecular Mutagenesis 35, 206–221.

    CAS  Google Scholar 

  • Tucker, J. D., Auletta, A., Cimido, M. C., Dearfield, K. L., Jacobson-Kram, D. Tice, R. R. and Carrano, A. V. (1993) Sister chromatid exchange: second report of the Gene-Tox Program, Mutation Research 297, 101–180.

    Google Scholar 

  • Van’t Hof, J. and Schairer, L. A. (1982) Tradescantia assay system for gaseous mutagens, A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 303–315.

    Article  Google Scholar 

  • Vatamaniuk, O. K., Mari, S., Lu, Y. P. and Rea, P. A. (1999) AtPCSI, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution, Proceedings of National Academy of Sciences, U. S. A. 96, 7110–7115

    Article  CAS  Google Scholar 

  • Vig, B. K. (1982) Soybean (Glycine max [L.] Merill as a short-term assay for study of environmental mutagens, A report of the US Environmental Protection Agency Gene-Tox Program, Mutation Research 99, 339–347

    Article  PubMed  CAS  Google Scholar 

  • Vogel, D. G., Rovinvitich, P. S. and Mottet, N. K. (1986) Methyl mercury effects on cell cycle kinetics, Cell Tissue Kinetics 19, 95–118.

    Google Scholar 

  • Wagner, E. D. and Plewa, M. J. (1985) Induction of micronuclei in maiz root tip cells and a correlation with forward mutation at the yg2 locus, Environmental Mutagenesis 7, 821–832.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. (1999) Clasogenicity of chromium contaminated soil samples evaluated by Vicia faba micronucleus assay Mutation Research 426, 147–149.

    Google Scholar 

  • Waters, M. D., Stack, H. F., Brady, A. L., Lohman, P. H. M., Haroun, L. and Vainio, H. (1988) Use of computerized data listing and activity profiles of genetic and related effects in the review of 195 compounds, Mutation Research 205, 295–312.

    Google Scholar 

  • Wiersma, D., van Goor, B. J. and van der Veen, N. G. (1986) Cadmium, lead, mercury, and arsenic concentrations in crops and corresponding soils in The Netherlands, Journal of Agriculture and Food Chemistry 34, 1067–1074.

    Article  CAS  Google Scholar 

  • Woolhouse, H. W. (1983) Toxicity and tolerance in the response of plants to metals, in O. Lang, P. S. Nobel, C. B. Osmond and h. Zeigler (eds.) Encylopedia of Plant Physiology, Vol. 12 Physological Plant Ecology III,Springer-Verlag, Berlin, pp. 245–300

    Google Scholar 

  • Wurgler, F. E. and Kramers, P. G. N. (1992) Environmental effects of genotoxins (eco-genotoxicology), Mutgenesis 7, 321–327.

    Article  CAS  Google Scholar 

  • Xiang, C. and Oliver, D. J. (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, The Plant Cell 10, 1539–1550.

    PubMed  CAS  Google Scholar 

  • Zenk, M. H. (1996) Heavy metal detoxification in higher plants, Gene 176, 21–30.

    Article  Google Scholar 

  • Zhang, Y. And Yang, X. (1994) The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare, Mutation Research 312, 121–126.

    Google Scholar 

  • Zhu, Y. L., Pilon-Smits, E. A., Tarun, A. S., Weber, S. U., Jouanin, L. and Terry, N. (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase, Plant Physiology 121, 1169–1178.

    Google Scholar 

  • Zimmermann, F. K., de Serres, F. J., Shelby, M. D. and Wassom, J. S. (1979) Proceedings of the workshop on systems to detect induction of aneuploidy by environmental mutagens, Environmental Health Perspectives 31, 1–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panda, B.B., Panda, K.K. (2002). Genotoxicity and Mutagenicity of Metals in Plants. In: Prasad, M.N.V., Strzałka, K. (eds) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2660-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2660-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5952-9

  • Online ISBN: 978-94-017-2660-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics