Skip to main content

Advertisement

Log in

Bacterial selection by mycospheres of Atlantic Rainforest mushrooms

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu YI et al (2012) Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol 21:2282–2296

    Article  PubMed  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Antonín V, Ryoo R, Shin HD (2012) Marasmioid and gymnopoid fungi of the Republic of Korea. 4. Marasmius sect. Sicci. Mycol Prog 11:615–638

    Article  Google Scholar 

  • Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359

    Article  PubMed  Google Scholar 

  • Azevedo BLC (2008) Comunidades de fungos microrrízicos arbusculares no solo e raízes de cana-de-açúcar. (Doctoral Dissertation) USP, Piracicaba, Brazil, p 111

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Boersma FGH, Warmink JA, Andreote FA, van Elsas JD (2009) Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies. Appl Environ Microbiol 75:1979–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boersma FGH, Otten R, Warmink JA, Nazir R, van Elsas JD (2010) Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds. Soil Biol Biochem 42:2137–2145

    Article  CAS  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Caporaso JG, Kucynski J, Stombaugh J (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial. PRIMER-E, Plymouth, p 296

    Google Scholar 

  • Clegg CD, Lovell RDL, Hobbs PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol Ecol 43:263–270

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Folman LB, Gunnewiek PJAK, Boddy L, de Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63:181–191

    Article  CAS  PubMed  Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas firLaccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol 168:4–8

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Shao L, Tong L, Liu H (2011) Ethylene removal efficiency and bacterial community diversity of a natural zeolite biofilter. Bioresour Technol 102:576–584

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    Article  CAS  Google Scholar 

  • Gonçalves RB, Brandão CRF (2008) Diversidade de abelhas (Hymenoptera, Apidae) ao longo de um gradiente latitudinal na Mata Atlântica. Biota Neotrop 8:051–061

    Google Scholar 

  • Gryndler M, Hrselová H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the Arbuscular Mycorrhizal Fungus Glomus claroideum. Folia Microbiol 45:545–551

    Article  CAS  Google Scholar 

  • Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  CAS  PubMed  Google Scholar 

  • Haq IU, Zhang M, Yang P, van Elsas JD (2014) The Interactions of bacteria with fungi in soil: emerging Concepts. Adv Appl Microbiol 89:185–215

    Article  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56:34–43

    Article  CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Kuo M (2008) Gymnopus dryophilus at the MushroomExpert.Com Web site

  • Leveau JHJ, Preston GM (2007) Bacterial mycophagy: definition and diagnosis of a unique bacterial–fungal interaction. New Phytol 177:859–876

    Article  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurck R (2010) Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164:785–795

    Article  PubMed  Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Harmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278

    Article  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  CAS  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccheriui MT, Landi L, Pietramellara G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  CAS  PubMed  Google Scholar 

  • Nazir R, Zhang M, de Boer W, van Elsas JD (2012) The capacity to co-migrate with Lyophyllum sp. strain Karsten through different soils is spread among several phylogenetic groups within the genus Burkholderia. Soil Biol Biochem 50:221–233

    Article  CAS  Google Scholar 

  • Nilsson RH, Bok G, Ryberg M, Kristiansson E, Hallenberg N (2009) A software pipeline for processing and identification of fungal ITS sequences. Source Code Biol Med 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Osono T, Ishii Y, Hirose D (2008) Fungal colonization and decomposition of Castanopsis sieboldii leaves in a subtropical forest. Ecol Res 23:909–917

    Article  Google Scholar 

  • Paterson E, Midwood AJ, Millard P (2009) Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol 184:19–33

    Article  CAS  PubMed  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Prewitt ML, Diehl SV, McElroy TC, Diehl WJ (2008) Comparison of general fungal and basidiomycete-specific ITS primers for identification of wood decay fungi. For Prod J 58:66

    CAS  Google Scholar 

  • Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729

    Article  Google Scholar 

  • Rodrigues JL, Pellizari VH, Mueller R, Baek K et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Nat Acad Sci 110:988–993

    Article  CAS  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnittler M, Stephenson SL (2000) Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 92:626–637

    Article  Google Scholar 

  • Stamets P (2005) Mycelium running: How mushrooms can help save the world. Random House Inc, New York

    Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359–369

    Article  CAS  PubMed  Google Scholar 

  • Stopnisek N, Zühlke D, Carlier A, Barberán A, Fierer N, Becher D, Weisskopf L (2016) Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J 10:253–264

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 55:233–243

    Article  CAS  PubMed  Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513

    Article  CAS  Google Scholar 

  • Tonhasca JA (2005) Ecologia e história natural da Mata Atlântica. Interciência, Rio de Janeiro

    Google Scholar 

  • Uroz S, Calvaruso C, Turpaul MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Article  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  CAS  PubMed  Google Scholar 

  • Warmink JA, van Elsas JD (2009) Migratory response of soil bacteria to hyphae of Lyophyllum karsten in soil microcosms. Appl Environ Microbiol 75:2820–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warmink JA, Nazir R, van Elsas JD (2009) Universal and species- specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312

    Article  CAS  PubMed  Google Scholar 

  • Warmink JA, Nazir R, Corten JD, van Elsas JD (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43:760–765

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky HH, White TJ (eds) PCR protocols: a guide to methods and applications. New York Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • Zhang MZ, Pereira e Silva MC, Maryam CDM, van Elsas JD (2014) The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 89:516–526

Download references

Acknowledgments

We would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for providing the Masters scholarship for Josh Halsey, the São Paulo State Research Support Foundation (FAPESP) for funding this research Project (proc. 2010/16635-7), and the Serra do Mar State Park for allowing access to the study sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele de Cássia Pereira e Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2016_734_MOESM1_ESM.pdf

Figure S1. All mushrooms sampled in the Brazilian Atlantic Rainforest and their families. Mushroom 28 (a); 4 (b); 1 (c); 29 (d); 31 and 32 (e); 3 (f); 2 (g); 13 (h); 26 and 27 (i); 30 (j); 33 (k); 15 and 16 (l); 9 (m); 11 (n); 8 and 10 (o); 5, 6 and 7 (p); 12 (q); 17 (r); 23 (s); 20, 21 and 22 (t); 14 (u); 17 and 18 (v); 24 (x) and 25 (y) (PDF 395 kb)

10482_2016_734_MOESM2_ESM.pdf

Figure S2. Fungal fruiting bodies found in the Brazilian Atlantic Rainforest. Legend: striped, mycosphere from mushroom related to Lachnocladiaceae; gray, Lepiotaceae; black, and Marasmiaceae. For meaning of the letters, see Figure S1. (PDF 448 kb)

10482_2016_734_MOESM3_ESM.pdf

Figure S3. PCR-DGGE profiles of the overall bacterial, alphaproteobacterial, and betaproteobacterial communities, from (A) Santa Virginia and (B) Picinguaba. Each mycosphere is followed by its respective bulk soil (PDF 1756 kb)

Supplementary material 4 (PDF 185 kb)

Figure S4. Relative proportion of phyla observed in each mycosphere and respective bulk soil sample (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halsey, J.A., de Cássia Pereira e Silva, M. & Andreote, F.D. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms. Antonie van Leeuwenhoek 109, 1353–1365 (2016). https://doi.org/10.1007/s10482-016-0734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0734-1

Keywords

Navigation