Skip to main content
Log in

Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Interactions between bacteria and fungi are well known, but it is often underestimated how intimate and decisive such associations can be with respect to behaviour and survival of each participating organism. In this article we review recent advances in molecular bacterium–fungus interactions, combining the data of different model systems. Emphasis is given to the positive or negative consequences these interactions have on the microbe accommodating plants and animals. Intricate mechanisms of antagonism and tolerance have emerged, being as important for the biological control of plants against fungal diseases as for the human body against fungal infections. Bacterial growth promoters of fungal mycelium have been characterized, and these may as well assist plant-fungus mutualism as disease development in animals. Some of the toxins that have been previously associated with fungi are actually produced by endobacteria, and the mechanisms that lie behind the maintenance of such exquisite endosymbioses are fascinating. Bacteria do cause diseases in fungi, and a synergistic action between bacterial toxins and extracellular enzymes is the hallmark of such diseases. The molecular study of bacterium–fungus associations has expanded our view on microbial communication, and this promising field shows now great potentials in medicinal, agricultural and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn SJ, Yang CH, Cooksey DA (2007) Pseudomonas putida 06909 genes expressed during colonization on mycelial surfaces and phenotypic characterization of mutants. J Appl Microbiol 103:120–132

    Article  PubMed  CAS  Google Scholar 

  • Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1, 3-glucanase production. Can J Microbiol 54:577–587

    Article  PubMed  CAS  Google Scholar 

  • Anca IA, Lumini E, Ghignone S, Salvioli A, Bianciotto V, Bonfante P (2009) The ftsZ gene of the endocellular bacterium ‘Candidatus Glomeribacter gigasporarum’ is preferentially expressed during the symbiotic phases of its host mycorrhizal fungus. Mol Plant Microbe Interact 22:302–310

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A (2008) The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol 181:435–447

    Article  CAS  Google Scholar 

  • Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Brule C, Frey-Klett P, Pierrat JC, Courier S, Gerard F, Lemoine MC, Rousselet JL, Sommer G, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effect of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694

    Article  CAS  Google Scholar 

  • Burlinson P, Knaggs J, Hodgkin J, Pears C, Preston GM (2008) Interactions of pseudomonads with mushrooms and other eukaryotic hosts. In: Fatmi M, Collmer A, Sante Iacobellis N, Mansfield JW, Murillo J, Schaad NW, Ullrich M (eds) Pseudomonas syringae pathovars and related pathogens–identification, epidemiology and genomics. Springer, Berlin, pp 295–304

    Chapter  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561

    Article  PubMed  CAS  Google Scholar 

  • Chaucheyras-Durand F, Fonty G (2001) Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod Nutr Dev 41:57–68

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury PR, Heinemann JA (2006) The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl Environ Microbiol 72:3558–3565

    Article  PubMed  CAS  Google Scholar 

  • Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Coraiola M, Lo Cantore P, Lazzaroni S, Evidente A, Iacobellis NS, Dalla Serra M (2006) WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochim Biophys Acta 1758:1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  PubMed  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • de Weert S, Kuiper I, Lagendijk EL, Lamers GE, Lugtenberg BJ (2004) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 17:1185–1191

    Article  PubMed  Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defence: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  PubMed  CAS  Google Scholar 

  • Frapolli M, Défago G, Moënne-Loccoz Y (2007) Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2, 4-diacetylphloroglucinol. Environ Microbiol 9:1939–1955

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka MT (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gill WM, Tsuneda A (1997) The interaction of soft rot bacterium Pseudomonas gladioli pv. agaricicola with Japanese cultivated mushrooms. Can J Microbiol 43:639–648

    Article  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Hogan DA, Kolter R (2002) PseudomonasCandida interactions: an ecological role for virulence factors. Science 296:2229–2232

    Article  PubMed  CAS  Google Scholar 

  • Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    Article  PubMed  CAS  Google Scholar 

  • Hong TY, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1,3-beta-glucanase of Paenibacillus sp. isolated from garden soil. Microbiol Biotechnol 61:472–478

    CAS  Google Scholar 

  • Hoshino T, Kose K (1990) Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes. J Bacteriol 172:5540–5543

    PubMed  CAS  Google Scholar 

  • Huh CG, Aldrich J, Mottahedeh J, Kwon H, Johnson C, Marsh R (1998) Cloning and characterization of Physarum polycephalum tectonins. Homologues of limulus lectin L-6. J Biol Chem 273:6565–6574

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AS, Gebremariam T, Liu M, Chamilos G, Kontoyiannis D, Mink R, Kwon-Chung KJ, Fu Y, Skory CD, Edwards JE Jr, Spellberg B (2008) Bacterial endosymbiosis is widely present among zygomycetes but does not contribute to the pathogenesis of mucormycosis. J Infect Dis 198:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, Kawamoto S (2007) Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol 189:4815–4826

    Article  PubMed  CAS  Google Scholar 

  • Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Becard G (2004) Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum”, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2008) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Kerr JR (1994) Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32:525–527

    PubMed  CAS  Google Scholar 

  • Kim PI, Chung KC (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234:177–183

    Article  PubMed  CAS  Google Scholar 

  • Klepser ME (2006) Candida resistance and its clinical relevance. Pharmacotherapy 26:68S–75S

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  PubMed  CAS  Google Scholar 

  • Leveau JH, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol 177:859–876

    Article  PubMed  Google Scholar 

  • Lo Cantore P, Lazzaroni S, Coraiola M, Serra MD, Cafarchia C, Evidente A, Lacobellis NS (2006) Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Mol Plant Microbe Interact 19:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  PubMed  CAS  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136

    Article  Google Scholar 

  • Martin F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp., biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  PubMed  CAS  Google Scholar 

  • Morelle S, Carbonnelle E, Matic I, Nassif X (2005) Contact with host cells induces a DNA repair system in pathogenic Neisseriae. Mol Microbiol 55:853–861

    Article  PubMed  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Dubach H, Haas D, Défago G (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2007) A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 8:41–45

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, de Looss CF, Ishida K, Ishida M, Roth M, Buder K, Hertweck C (2007a) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C (2007b) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57:2583–2589

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007c) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Bandemer S, Rüchel R, Dannaoui E, Hertweck C (2008) Lack of evidence of endosymbiotic toxin-producing bacteria in clinical Rhizopus isolates. Mycoses 51:266–269

    Article  PubMed  CAS  Google Scholar 

  • Piispanen AE, Hogan DA (2008) PEPped up: induction of Candida albicans virulence by bacterial cell wall fragments. Cell Host Microbe 4:1–2

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872

    Article  PubMed  CAS  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Rikhvanov EG, Varakina NN, Sozinov DY, Voinikov VK (1999) Association of bacteria and yeasts in hot springs. Appl Environ Microbiol 65:4292–4293

    PubMed  CAS  Google Scholar 

  • Saito F, Ikeda R (2005) Killing of Cryptococcus neoformans by Staphylococcus aureus: the role of cryptococcal capsular polysaccharide in the fungal-bacteria interaction. Med Mycol 43:603–612

    Article  PubMed  CAS  Google Scholar 

  • Scherlach K, Partida-Martinez LP, Dahse HM, Hertweck C (2006) Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 128:11529–11536

    Article  PubMed  CAS  Google Scholar 

  • Schmitt I, Partida-Martinez LP, Winkler R, Voigt K, Einax E, Dölz F, Telle S, Wöstemeyer J, Hertweck C (2008) Evolution of host resistance in a toxin-producing bacterial-fungal alliance. ISME J 2:632–641

    Article  PubMed  CAS  Google Scholar 

  • Schnellmann J, Zeltins A, Blaak H, Schrempf H (1994) The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline alpha-chitin of fungi and other organisms. Mol Microbiol 13:807–819

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, de Vos CH, Lemanceau P, Raaijmakers JM (2004) Defense responses of fusarium oxysporum to 2, 4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM (2008) Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2, 4-diacetylphloroglucinol. Environ Microbiol 10:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85

    Article  PubMed  CAS  Google Scholar 

  • Schüssler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  CAS  Google Scholar 

  • Siemieniewicz KW, Schrempf H (2007) Concerted responses between the chitin-binding protein secreting Streptomyces olivaceoviridis and Aspergillus proliferans. Microbiology 153:593–600

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23:591–614

    Article  PubMed  CAS  Google Scholar 

  • Tarkka MT, Frey-Klett P (2008) Mycorrhiza helper bacteria. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, Berlin, pp 113–132

    Google Scholar 

  • Tarkka MT, Schrey SD, Nehls U (2006) The alpha-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49:294–301

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto T, Murata H, Shirata A (2002) Identification of non-pseudomonad bacteria from fruit bodies of wild agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii. Biosci Biotechnol Biochem 66:2201–2208

    Article  PubMed  CAS  Google Scholar 

  • Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278

    Article  PubMed  CAS  Google Scholar 

  • van Rij ET, Girard G, Lugtenberg BJ, Bloemberg GV (2005) Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814

    Article  PubMed  CAS  Google Scholar 

  • Wargo MJ, Hogan DA (2006) Fungal–bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol 9:359–364

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Wichmann G, Sun JP, Dementhon K, Glass NL, Lindow SE (2008) A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol Microbiol 68:672–689

    Article  PubMed  CAS  Google Scholar 

  • Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y (2008) Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4:28–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. T. Tarkka would like to thank Silvia Schrey, Nina Lehr, Margret Ecke, Hans-Peter Fiedler, Julia Riedlinger, Dirk Schulz, and Rüdiger Hampp for their experimental and intellectual effort, the German Science Foundation and Helmholtz-Gemeinschaft for financial support, and Ursula Kües and Stefan Hohmann for the kind invitation to write this review. PFK would like to thank A. Deveau, J. Bertaux, C. Brulé and B. Palin for their experimental contribution to the analysis of the interactions between bacteria and forest mycorrhizal fungi, INRA and Lorraine Region for funding the researches. AS would like to thank M. Barret, M. Boutin and A.-Y. Guillerm-Erckelboudt for their experimental contributions in the analysis of the interactions between bacteria and pathogenic fungi, and INRA and Bretagne Region for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika T. Tarkka.

Additional information

Communicated by U. Kues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarkka, M.T., Sarniguet, A. & Frey-Klett, P. Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet 55, 233–243 (2009). https://doi.org/10.1007/s00294-009-0241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0241-2

Keywords

Navigation