Skip to main content
Log in

Fold-up derivatives of set-valued functions and the change-set problem: A Survey

  • Invited Review Article
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We give a survey on fold-up derivatives, a notion which was introduced by Khmaladze (J Math Anal Appl 334:1055–1072, 2007) and extended by Khmaladze and Weil (J Math Anal Appl 413:291–310, 2014) to describe infinitesimal changes in a set-valued function. We summarize the geometric background and discuss in detail applications in statistics, in particular to the change-set problem of spatial statistics, and show how the notion of fold-up derivatives leads to the theory of testing statistical hypotheses about the change-set. We formulate Poisson limit theorems for the log-likelihood ratio in two versions of this problem and present also the route to a central limit theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosio, L., Colesanti, A., Villa, E. (2008). Outer Minkowski content for some classes of closed sets. Mathematische Annalen, 342, 727–748.

  • Artstein, Z. (1995). A calculus of set-valued maps and set-valued evolution equations. Set-Valued Analysis, 3, 213–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Artstein, Z. (2000). Invariant measures of set-valued maps. Journal of Mathematical Analysis and Applications, 252, 696–709.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin, J.-P. (1981). Contingent derivatives of set-valued maps and existence of solutions to non-linear inclusions and differential inclusions. In L.Nachbin (Ed.), Mathematical Analysis and Applications, Part A (pp. 160–232). Advances in Mathematics: Supplimentary Studies, 7A. New York: Academic Press

  • Aubin, J.-P., Cellina, A. (1984). Differential Inclusions, Set-Valued Maps and Viability Theory. Grundlehren der mathematischen Wissenschaften. Berlin: Springer

  • Aubin, J.-P., Frankowska, H. (1990). Set-valued Analysis. Basel: Birkhäuser.

  • Baíllo, A., Cuevas, A. (2001). On the estimation of a star-shaped set. Advances in Applied Probability, 33, 1–10.

  • Bernardin, F. (2003). Multivalued stochastic differential equations: convergence of a numerical scheme. Set-Valued Analysis, 11, 393–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Borwein, J. M., Zhu, Q. J. (1999). A survey of sub-differential calculus with applications. Nonlinear Analysis, 38, 687–773.

  • Brodsky, B. E., Darkhovsky, B. S. (1993). Nonparametric Methods in Change-Point Problems. Dordrecht: Kluwer Academic Publishers.

  • Carlstein, E., Krishnamoorthy, C. (1992). Boundary estimation. Journal of the American Statististical Association, 87, 430–438.

  • Cramér, H. (1999). Mathematical Methods of Statistics, 19th printing. Princeton: Princeton University Press.

  • Cuevas, A., Fraiman, R., Rodríguez-Casal, A. (2007). A nonparametric approach to the estimation of lengths and surface areas. Annals of Statistics, 35, 1031–1051.

  • Daley, D., Vere-Jones, D. (2005). An Introduction to the Theory of Point Processes, 2nd ed. 2003, Corrected 2nd printing. New York: Springer

  • Deheuvels, P., Mason, D. M. (1995). Nonstandard local empirical processes indexed by sets. Journal of Statistical Planning and Inference, 45, 91–112.

  • Einmahl, J. H. J. (1997). Poisson and Gaussian approximation of weighted local empirical processes. Stochastic Processes and Applications, 70, 31–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Einmahl, U., Mason, D. M. (1997). Gaussian approximation of local empirical processes indexed by functions. Probability Theory and Related Fields, 107, 283–311.

  • Einmahl, J. H. J., Khmaladze, E. (2011). Central limit theorems for local empirical processes near boundaries of sets. Bernoulli, 17, 545–561.

  • Federer, H. (1959). Curvature measures. Transactions of the American Mathematical Society, 93, 418–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, J. H. G., Pokorny, D., & Rataj, J. (2017). Kinematic formulas for sets defined by differences of convex functions. Advances in Mathematics, 311, 796–832.

    Article  MathSciNet  MATH  Google Scholar 

  • Gruber, P. M. (1993). History of convexity. In P. M. Gruber J. M. Wills (Eds.), Handbook of Convex Geometry (Vol. A, pp. 3–15). Amsterdam: North Holland.

  • Hajek, Ja, Shidak, Z. (1967). Theory of Rank Tests. New York: Academic Press.

  • Hug, D., Last, G., & Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Mathematische Zeitschrift, 246, 237–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Ivanoff, B. G., Merzbach, E. (2010). Optimal detection of a change-set in a spatial Poisson process. Annals of Applied Probability, 20, 640–659.

  • Janssen, A. (1995). Principal component decomposition of non-parametric tests. Probability Theory and Related Fields, 101, 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen, A. (2000). Global power functions of goodness of fit tests. Annals of Statistics, 28, 239–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Karr, A. F. (1991). Point Processes and their Statistical Inference (2nd ed.). New York: Marcel Dekker.

    MATH  Google Scholar 

  • Khmaladze, E. (1998). Goodness of fit tests for “chimeric” alternatives. Statistica Neerlandica, 52, 90–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Khmaladze, E. (2007). Differentiation of sets in measure. Journal of Mathematical Analysis and Applications, 334, 1055–1072.

    Article  MathSciNet  MATH  Google Scholar 

  • Khmaladze, E., Toronjadze, N. (2001). On the almost sure coverage property of Voronoi tessellation: the \(R^1\) case. Advances in Applied Probability, 33, 756–764.

  • Khmaladze, E., Weil, W. (2008). Local empirical processes near boundaries of convex bodies. Annals of the Institute of Statistical Mathematics, 60, 813–842.

  • Khmaladze, E., Weil, W. (2014). Differentiation of sets - The general case. Journal of Mathematical Analysis and Applications, 413, 291–310.

  • Khmaladze, E., Mnatsakanov, R., Toronjadze, N. (2006a). The change-set problem for Vapnik-Červonenkis classes. Mathematical Methods of Statistics, 15, 224–231.

  • Khmaladze, E., Mnatsakanov, R., Toronjadze, N. (2006b). The change-set problem and local covering numbers. Mathematical Methods of Statistics, 15, 289–308.

  • Kim, B. K., Kim, J. H. (1999). Stochastic integrals of set-valued processes and fuzzy processes. Journal of Mathematical Analysis and Applications, 236, 480–502.

  • Korostelev, A. P., Tsybakov, A. B. (1993). Minimax Theory of Image Reconstructions. Lecture Notes in Statistics (vol. 82). New York: Springer.

  • Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. New York: Springer.

    Book  MATH  Google Scholar 

  • Landau, L. D., Lifshitz, E. M. (1987). Fluid Mechanics (2nd ed.). Oxford-Burlington: Butterworth-Heinemann.

  • Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Le Cam, L., Lo Yang, G. (2000). Asymptotics in Statistics. New York: Springer.

  • Lemaréchal, C., Zowe, J. (1991). The eclipsing concept to approximate a multi-valued mapping. Optimization, 22, 3–37.

  • Mammen, E., Tsybakov, A. B. (1995). Asymptotic minimax recovery of sets with smooth boundaries. Annals of Statistics, 23, 502–524.

  • Motzkin, T. (1935). Sur quelques propriétés charactéristiques des ensemble convexes. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali, 21, 562–567.

    Google Scholar 

  • Müller, H. G., Song, K. S. (1996). A set-indexed process in a two-region image. Stochastic Processes and Applications, 62, 87–101.

  • Oosterhoff, J., van Zwet, W.R. (2012) A note on contiguity and Hellinger distance. In Selected Works of Willem van Zwet (pp. 63–72). New York: Springer

  • Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli, 13, 1124–1150.

    Article  MathSciNet  MATH  Google Scholar 

  • Pflug, G Ch. (1996). Optimization of Stochastic Models. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Reitzner, M., Spodarev, E., Zaporozhets, D. (2012). Set reconstruction by Voronoi cells. Advances in Applied Probability, 44, 938–953.

  • Ripley, B. D., Rasson, J.-P. (1977). Finding the edge of a Poisson forest. Journal of Applied Probability, 14, 483–491.

  • Schneider, R. (1979). Bestimmung konvexer Körper durch Krümmungsmaße. Commentarii Mathematici Helvetici, 54, 42–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider, R. (2013). Convex Bodies: the Brunn-Minkowski Theory, 2nd expanded ed., Encyclopedia of Mathematics and its Applications (vol. 44). Cambridge, UK: Cambridge University Press

  • Schneider, R., Weil, W. (2008). Stochastic and Integral Geometry. Berlin: Springer.

  • Thäle, C., Yukich, J. E. (2016). Asymptotic theory for statistics of the Poisson-Voronoi approximation. Bernoulli, 22, 2372–2400.

  • van der Vaart, A. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • van der Vaart, A., Wellner, J. A. (1996). Weak Convergence of Empirical processes. New York: Springer.

  • Weisshaupt, H. (2001). A measure-valued approach to convex set-valued dynamics. Set-Valued Analysis, 9, 337–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Weyl, H. (1939). On the volume of tubes. American Journal of Mathematics, 61, 461–472.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for their useful remarks on a previous version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate Khmaladze.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmaladze, E., Weil, W. Fold-up derivatives of set-valued functions and the change-set problem: A Survey. Ann Inst Stat Math 70, 1–38 (2018). https://doi.org/10.1007/s10463-017-0628-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-017-0628-7

Keywords

Navigation