Skip to main content
Log in

A calculus for set-valued maps and set-valued evolution equations

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

A definition of differentiability of a set-valued map is offered. As derivatives, which are called directives in the set-valued setting, unions of affine maps are used; these are called multiaffines. A multiaffine is a directive if it is a first-order approximation of the set-valued map. One application is a necessary condition for maximin optimality of constrained decisions. A distance among multiaffines permits the development of set-valued evolution equations along the lines of ordinary differential equations in a vector space. The theory is displayed along with some comments on applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arahovitis, J.: Multivalued linear mappings and matrices,Math. Balkanica 3 (1973), 3–8.

    Google Scholar 

  2. Artstein, Z.: On the calculus of set-valued functions,Indiana Univ. Math. J. 24 (1974), 433–441.

    Google Scholar 

  3. Artstein, Z.: Piecewise linear approximations of set-valued maps,J. Approx. Theory 56 (1989), 41–45.

    Google Scholar 

  4. Artstein, Z.: First order approximations for differential exclusions,Set-Valued Anal. 2 (1994), 7–17.

    Google Scholar 

  5. Aubin, J.-P.: Contingent derivatives of set-valued maps and existence of solutions to non-linear inclusions and differential inclusions, in L. Nachbin (ed.),Mathematical Analysis and Applications, Academic Press, New York, 1981, pp. 159–229.

    Google Scholar 

  6. Aubin, J.-P.: Mutational equations in metric spaces,Set-Valued Anal. 1 (1993), 3–46.

    Google Scholar 

  7. Aubin, J.-P. and Cellina, A.:Differential Inclusions, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  8. Aubin, J.-P. and Frankowska, H.:Set-Valued Analysis, Birkhäuser, Basel, 1990.

    Google Scholar 

  9. Aumann, R. J.: Integrals of set-valued functions,J. Math. Anal. Appl. 12 (1965), 1–12.

    Google Scholar 

  10. Banks, H. T. and Jacobs, M. Q.: A differential calculus for multifunctions,J. Math. Anal. Appl. 29 (1970), 246–272.

    Google Scholar 

  11. Bhatia, N. P. and Szegö, G. P.:Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  12. Brandao Lopes Pinto, A. J., De Blasi, F. S. and Iervolino, F.: Uniqueness and existence theorems for differential equations with compact convex valued solutions,Boll. Un. Mat. Ital. 4 (1971), 47–54.

    Google Scholar 

  13. Bridgland, T. F.: Trajectory integrals of set-valued functions,Pacific J. Math. 33 (1970), 43–67.

    Google Scholar 

  14. Burden, R. L., Faires, J. D. and Reynolds, A. C.:Numerical Analysis, Pindle, Weber & Schmidt, Boston, 1978.

    Google Scholar 

  15. Bushaw, D.: Dynamical polysystems and optimization,Contrib. Differential Equations 2 (1963), 351–365.

    Google Scholar 

  16. De Blasi, F. S.: On the differentiability of multifunctions,Pacific J. Math. 66 (1976), 67–81.

    Google Scholar 

  17. De Blasi, F. S. and Iervolino, F.: Euler method for differential equations with set-valued solutions,Boll. Un. Mat. Ital. 4 (1971), 941–949.

    Google Scholar 

  18. Debreu, G.: Integration of correspondences, inProc. 5th Berkeley Symp. Math. Stat. and Prob. Vol. II, University of California Press, 1967, pp. 351–372.

  19. Deimling, K.:Multivalued Differential Equations, De Gruyter, Berlin, 1992.

    Google Scholar 

  20. Delfour, M. C. and Zolesio, J.-P.: Shape sensitivity analysis via min max differentiability,SIAM J. Control Optim. 26 (1988), 834–862.

    Google Scholar 

  21. Delfour, M. C. and Zolesio, J.-P.: Velocity method and Lagrangian formulation for the computation of the shape Hessian,SIAM J. Control Optim. 29 (1991), 1414–1442.

    Google Scholar 

  22. Deutsch, F. and Singer, I.: On single-boundedness of convex set-valued maps,Set-Valued Anal. 1 (1993), 97–103.

    Google Scholar 

  23. Donchev, A. and Lempio, F.: Difference methods for differential inclusions: A survey,SIAM Rev. 34 (1992), 263–294.

    Google Scholar 

  24. Doyen, L.: Filippov and invariance theorems for mutational inclusions of tubes,Set-Valued Anal. 1 (1993), 289–303.

    Google Scholar 

  25. Doyen, L.: Shape Lyapunov functions and stabilization of reachable tubes of control problems,J. Math. Anal. Appl. 184 (1994), 222–228.

    Google Scholar 

  26. Doyen, L.: Inverse function theorems and shape optimization,SIAM J. Control Optim. 32 (1994), 1621–1642.

    Google Scholar 

  27. Fleming, W. H.:Functions of Several Variables, Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

  28. Frankowska, H.: Local controllability and infinitesimal generators of semigroups of set-valued maps,SIAM J. Control Optim. 25 (1987), 412–432.

    Google Scholar 

  29. Frankowska, H.: Some inverse mapping theorems,Ann. Inst. Henri Poincaré, Analyse non linéaire 7 (1990), 183–234.

    Google Scholar 

  30. Hermes, H.: Calculus of set-valued functions and control,J. Math. Mech. 18 (1968), 47–60.

    Google Scholar 

  31. Hukuhara, M.: Integration des applications mesurable dont la valeur est compact convexe,Funk. Eku. 10 (1967), 205–223.

    Google Scholar 

  32. Klein, E. and Thompson, A. C.:Theory of Correspondences, Wiley, New York, 1984.

    Google Scholar 

  33. Kurzhanski, A. B. and Filippova, T. F.: On the set-valued calculus in problems of viability and control for dynamic processes: The evolution equation, in Attouchet. al. (eds),Analyse non linéaire, Gauthier-Villars, Paris, 1989, pp. 339–363.

    Google Scholar 

  34. Kurzhanski, A. B. and Nikonov, O. I.: On the problem of synthesizing control strategies. Evolution equations and multivalued integration,Soviet Math. Dokl. 41 (1990), 300–305.

    Google Scholar 

  35. Lemaréchal, C. and Zowe, J.: The eclipsing concept to approximate a multi-valued mapping,Optimization 22 (1991), 3–37.

    Google Scholar 

  36. Lin, Y., Sontag, E. D. and Wang, Y.: A smooth converse Lyapunov theorem for robust stability,SIAM J. Control Optim,, to appear (preliminary version entitled ‘Recent results on Lyapunov-theoretic techniques for nonlinear stability’, Proc. Amer. Automatic Control Conf., Baltimore, 1994, pp. 1771–1775).

  37. Lintz, R. G. and Buonomano, V.: The concept of differential equations in topological spaces and generalized mechanics,J. Reine Angew. Math. 265 (1974), 31–70.

    Google Scholar 

  38. Martelli, M. and Vignoli, A.: On differentiability of multi-valued maps,Boll. Un. Mat. Ital. 10 (1974), 701–712.

    Google Scholar 

  39. Matheron, G.:Random Sets and Integral Geometry, Wiley, New York, 1975.

    Google Scholar 

  40. Mordukhovich, B.: Sensitivity analysis for constraint and variational systems by means of set-valued differentiation,Optimization, to appear.

  41. Nikolski, M. S.: Local approximation of first order to set-valued mappings, in: A. Kurzhanski and V. Veliov (eds),Set-Valued Analysis and Differential Inclusions, Birkhäuser, Boston, to appear.

  42. Panasyuk, A. I.: Differential equations in metric spaces,Differential Equations 21 (1985), 914–921.

    Google Scholar 

  43. Panasyuk, A. I.: Equations of attainable set dynamics, Part I: Integral funnel equations,J. Optim. Theory Appl. 64 (1990), 349–366.

    Google Scholar 

  44. Panasyuk, A. I.: Quasidifferential approximation equations in metric spaces under Caratheodory-type conditions,Differential Equations 28 (1992), 1073–1083.

    Google Scholar 

  45. Penot, J.-P.: Differentiability of relations and differential stability of perturbed optimization problems,SIAM J. Control Optim. 22 (1984), 529–551; erratum:26 (1988), 997–998.

    Google Scholar 

  46. Polovinkin, E. S. and Smirnov, G. V.: Differentiation of multivalued mappings and properties of solutions of differential inclusions,Soviet Math. Dokl. 33 (1986), 662–666.

    Google Scholar 

  47. Rockafellar, R. T.: Proto-differentiability of set-valued mappings and its applications in optimization, in Attouch,et. al. (eds),Analyse non linéaire, Gauthier-Villars, Montreal, 1989, pp. 449–482.

    Google Scholar 

  48. Roxin, E.: Stability in general control systems,J. Differential. Equations 1 (1965), 115–150.

    Google Scholar 

  49. Roxin, E.: On generalized dynamical systems defined by contingent equations,J. Differential Equations 2 (1965), 188–205.

    Google Scholar 

  50. Rubinov, A. M.: The contingent derivative of a multivalued mapping and differentiability of the maximum under connected constraints,Sib. Math. Zh. 26 (1985), 147–155.

    Google Scholar 

  51. Wolenski, P.: The exponential formula for the reachable set of Lipschitz differential inclusions,SIAM J. Control Optim. 28 (1990), 1148–1161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Incumbent of the Hettie H. Heineman Professorial Chair in Mathematics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artstein, Z. A calculus for set-valued maps and set-valued evolution equations. Set-Valued Anal 3, 213–261 (1995). https://doi.org/10.1007/BF01025922

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025922

Mathematics Subject Classifications (1991)

Key words

Navigation