Skip to main content
Log in

A local Steiner–type formula for general closed sets and applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract.

We introduce support (curvature) measures of an arbitrary closed set A in ℝd and establish a local Steiner–type formula for the localized parallel volume of A. We derive some of the basic properties of these support measures and explore how they are related to the curvature measures available in the literature. Then we use the support measures in analysing contact distributions of stationary random closed sets, with a particular emphasis on the Boolean model with general compact particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Zur Theorie der gemischten Volumina von konvexen Körpern, I. Verallgemeinerung einiger Begriffe der Theorie der konvexen Körper (in Russian), Mat. Sbornik N.S. 2, 947–972 (1937)

    Google Scholar 

  2. Baddeley, A.J., Gill, R.D.: The empty space hazard of a spatial pattern. University Utrecht, Department of Math. Preprint 845, (1994)

  3. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications. Wiley, Chichester, 1990

  4. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    MATH  Google Scholar 

  5. Federer, H.: Geometric Measure Theory. Springer, Berlin, 1969

  6. Fenchel, W., Jessen, B.: Mengenfunktionen und konvexe Körper. Danske Vid. Selsk., Mat.-Fys. Medd. 16, 1–31 (1938)

    Google Scholar 

  7. Ferry, S.: When ɛ-boundaries are manifolds. Fund. Math. 90, 199–210 (1975/76)

    Google Scholar 

  8. Fremlin, D.H.: Skeletons and central sets. Proc. London Math. Soc. 74, 701–720 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52, 1025–1046 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Gariepy, R., Pepe, W.D.: On the level sets of a distance function in a Minkowski space. Proc. Am. Math. Soc. 31, 255–259 (1972)

    MATH  Google Scholar 

  11. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. I. Cartesian currents. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 37, Springer-Verlag, Berlin, 1998

  12. Gray, A.: Tubes. Addison-Wesley, Redwood City, 1990

  13. Hansen, M.B., Gill, R.D., Baddeley, A.J.: Kaplan-Meier type estimators for linear contact distributions. Scand. J. Statist. 23, 129–155 (1998)

    MATH  Google Scholar 

  14. Howard, R.: Boundary structure, comparison theorems, and strong maximum principles for sets with locally positive inner support radius. Preliminary Draft, October 2002

  15. Hug, D.: Generalized curvature measures and singularities of sets with positive reach. Forum Math. 10, 699–728 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Hug, D.: Measures, curvatures and currents in convex geometry, Habilitationsschrift. Universität Freiburg, Freiburg, Dezember 1999

  17. Hug, D., Last, G.: On support measures in Minkowski spaces and contact distributions in stochastic geometry. Ann. Probab. 28, 796–850 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Hug, D., Last, G., Weil, W.: Generalized contact distributions of inhomogeneous Boolean models. Adv. in Appl. Probab. 34, 21–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hug, D., Last, G., Weil, W.: A survey on contact distributions. In: Morphology of Condensed Matter, K. Mecke, D. Stoyan, (eds.), Lecture Notes Phys, Springer Berlin, 600, 317–357 (2002)

    Google Scholar 

  20. Kallenberg, O.: Random Measures. Akademie-Verlag Berlin and Academic Press, London, 1983

  21. Kneser, M.: Über den Rand von Parallelkörpern. Math. Nachr. 5, 241–251 (1951)

    MathSciNet  MATH  Google Scholar 

  22. Last, G., Schassberger, R.: On the distribution of the spherical contact vector of stationary germ-grain models. Adv. Appl. Probab. 30, 36–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York, 1975

  24. Rataj, J., Zähle, M.: Curvatures and currents for unions of sets with positive reach II. Ann. Global Anal. Geom. 20, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schneider, R.: Bestimmung konvexer Körper durch Krümmungsmaße. Comment. Math. Helv. 54, 42–60 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Schneider, R.: Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedicata. 9, 111–127 (1980)

    MathSciNet  MATH  Google Scholar 

  27. Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993

  28. Simon, L.M.: Lecture on Geometric Measure Theory. Australian National University, Canberra, 1984

  29. Stachó, L.L.: On the volume function of parallel sets. Acta Sci. Math. 38, 365–374 (1976)

    Google Scholar 

  30. Stachó, L.L.: On curvature measures. Acta Sci. Math. 41, 191–207 (1979)

    MathSciNet  Google Scholar 

  31. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Second Edition, Wiley, Chichester, 1995

  32. Walter, R.: Some analytical properties of geodesically convex sets. Abh. Math. Sem. Univ. Hamburg 45, 263–282 (1976)

    MATH  Google Scholar 

  33. Weil, W.: Mean bodies associated with random closed sets. Suppl. Rend. Circ. Mat. Palermo, Ser. II 50, 387–412 (1997)

    Google Scholar 

  34. Weyl, H.: On the volume of tubes. Am. J. Math. 61, 461–472 (1939)

    MATH  Google Scholar 

  35. Zähle, M.: Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hug.

Additional information

Mathematics Subject Classification (2000): 53C65, 28A75, 52A22, 60D05; 52A20, 60G57, 60G55, 28A80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hug, D., Last, G. & Weil, W. A local Steiner–type formula for general closed sets and applications. Math. Z. 246, 237–272 (2004). https://doi.org/10.1007/s00209-003-0597-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-003-0597-9

Keywords

Navigation