Skip to main content
Log in

Computationally efficient modular nonlinear filter stabilization for high Reynolds number flows

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The nonlinear filter based stabilization proposed in Layton et al. (J. Math. Fluid Mech. 14(2), 325–354 2012) allows to incorporate an eddy viscosity model into an existing laminar flow codes in a modular way. However, the proposed nonlinear filtering step requires the assembly of the associated matrix at each time step and solving a linear system with an indefinte matrix. We propose computationally efficient version of the filtering step that only requires the assembly once, and the solution of two symmetric, positive definite systems at each time step. We also test a new indicator function based on the entropy viscosity model of Guermond (Int. J. Numer. Meth. Fluids. 57(9), 1153–1170 2008); Guermond et al. (J. Sci. Comput. 49(1), 35–50 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D., Qin, J.: Quadratic velocity/linear pressure stokes elements. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations VII, pp 28–34. IMACS (1992)

  2. Berselli, L., Iliescu, T., Layton, W.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bertagna, L., Quaini, A., Veneziani, A.: Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Meth. Fluids 81(8), 463–488 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bowers, A., Rebholz, L., Takhirov, A., Trenchea, C.: Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering. Int. J. Numer. Meth. Fluids 70(7), 805–828 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bowers, A.L., Rebholz, L.G.: Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comp. Meth. Appl. M. 258, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Lunasin, E., Titi, E.: Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4 (4), 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chorin, A.J.: On the convergence of discrete approximations to the navier-stokes equations. Math. Comp. 23, 341–353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, S., Shen, J.: A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows. J. Comput. Phys. 291, 254–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guermond, J.L.: On the use of the notion of suitable weak solutions in CFD. Int. J. Numer. Meth. Fluids 57(9), 1153–1170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guermond, J.L., Minev, P.D.: High-order time stepping for the incompressible navier-stokes equations. SIAM J. Sci. Comput. 37(6), A2656–A2681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guermond, J.L., Minev, P.D.: High-order time stepping for the Navier-Stokes equations with minimal computational complexity. J. Comput. Appl. Math. 310, 92–103 (2017). Numerical Algorithms for Scientific and Engineering Applications

    Article  MathSciNet  MATH  Google Scholar 

  12. Guermond, J.L., Minev, P.D., Shen, J.: An overview of projection methods for incompressible flows. Comp. Meth. Appl. M. 195(44-47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guermond, J.L., Oden, T., Prudhomme, S.: Mathematical perspectives on large Eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6(2), 194–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guermond, J.L., Pasquetti, R., Popov, B.: From suitable weak solutions to entropy viscosity. J. Sci. Comput. 49(1), 35–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3-4), 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible navier-stokes equations. Int. J. Numer. Meth. Fluids 22(5), 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)

    Article  MATH  Google Scholar 

  18. Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the voigt regularization for incompressible navier-stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647–2662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Layton, W., Mays, N., Neda, M., Trenchea, C.: Numerical analysis of modular regularization methods for the BDF2 time discretization of the navier-stokes equations. ESAIM-math Model. Num. 48(3), 765–793 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Layton, W., Rebholz, L.G., Trenchea, C.: Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J. Math. Fluid Mech. 14(2), 325–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Layton, W., Takhirov, A.: Numerical analysis of wall adapted nonlinear filter models of turbulent flows. Contemp. Math. 586, 219–229 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for darcy-stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mardal, K.A., Winther, R.: Uniform preconditioners for the time dependent stokes problem. Numer. Math. 98(2), 305–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olshanskii, M., Xiong, X.: A connection between filter stabilization and eddy viscosity models. Numer. Meth. Part.l D. E. 29(6), 2061–2080 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Olshanskii, M.A., Reusken, A.: Analysis of a stokes interface problem. Numer. Math. 103(1), 129–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schäfer, M., Turek, S.: The benchmark problem ‘flow around a cylinder’ flow simulation with high performance computers II. In: Hirschel, E.H. (ed.) Notes on Numerical Fluid Mechanics, vol. 52, pp 547–566. Vieweg, Braunschweig (1996)

  27. Scheffer, V.: Hausdorff measure and the navier-stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Takhirov, A.: Voigt regularization for the explicit time stepping of the Hall effect term. Geophys. Astro. Fluid. 110(5), 409–431 (2016)

    Article  MathSciNet  Google Scholar 

  29. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comp. Math. 26(3), 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers, whose comments helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Takhirov.

Additional information

Communicated by: Jean-Frédéric Gerbeau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takhirov, A., Lozovskiy, A. Computationally efficient modular nonlinear filter stabilization for high Reynolds number flows. Adv Comput Math 44, 295–325 (2018). https://doi.org/10.1007/s10444-017-9544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9544-x

Keywords

Mathematics Subject Classification (2010)

Navigation