Skip to main content
Log in

Modular Nonlinear Filter Stabilization of Methods for Higher Reynolds Numbers Flow

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Stabilization using filters is intended to model and extract the energy lost to resolved scales due to nonlinearity breaking down resolved scales to unresolved scales. This process is highly nonlinear and yet current models for it use linear filters to select the eddies that will be damped. In this report we consider for the first time nonlinear filters which select eddies for damping (simulating breakdown) based on knowledge of how nonlinearity acts in real flow problems. The particular form of the nonlinear filter allows for easy incorporation of more knowledge into the filter process and its computational complexity is comparable to calculating a linear filter of similar form. We then analyze nonlinear filter based stabilization for the Navier–Stokes equations. We give a precise analysis of the numerical diffusion and error in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, N.A., Leonard, A.: Deconvolution of subgrid scales for the simulation of shock-turbulence interaction. In: Voke, P., Sandham, N.D., Kleiser, L. (eds.) Direct and Large Eddy Simulation III, p. 201. Kluwer, Dordrecht (1999)

  2. Adams N.A., Stolz S.: A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178, 391–426 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Adams, N.A., Stolz, S.: Deconvolution methods for subgrid-scale approximation in large eddy simulation. Modern Simulation Strategies for Turbulent Flow. R.T. Edwards (2001)

  4. Baker, G.: Galerkin Approximations for the Navier-Stokes Equations. Technical report. Harvard University, August 1976

  5. Barbato D., Berselli L.C., Grisanti C.R.: Analytical and numerical results for the rational large eddy simulation model. J. Math. Fluid Mech. 9, 44–74 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Berselli L.C.: On the large eddy simulation of the Taylor-Green vortex. J. Math. Fluid Mech. 7, S164–S191 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berselli L.C., Iliescu T., Layton W.: Large Eddy Simulation. Springer, Berlin (2004)

    Google Scholar 

  8. Betchov R.: Semi-isotropic turbulence and helicoidal flows. Phys. Fluids. 4, 925–926 (1961)

    Article  ADS  Google Scholar 

  9. Borggaard J., Iliescu T., Roop J.P.: A bounded artificial viscosity large eddy simulation model. SIAM J. Numer. Anal. 47, 622–645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd J.P.: Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods: preserving the boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys. 143, 283–288 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Brenner S., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    MATH  Google Scholar 

  12. Chorin A.J.: Numerical solution for the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Connors J., Layton W.: On the accuracy of the finite element method plus time relaxation. Math. Comput. 79, 619–648 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. Doering C., Foias C.: Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289–306 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Dunca, A.: Space averaged Navier-Stokes equations in the presence of walls. PhD thesis, University of Pittsburgh (2004)

  16. Dunca, A.: Investigation of a shape optimization algorithm for turbulent flows. Report ANL/MCS-P1101-1003, Argonne National Lab. http://www-fp.mcs.anl.gov/division/publications (2002)

  17. Dunca A., Epshteyn Y.: On the Stolz-Adams de-convolution LES model. SIAM J. Math. Anal. 37, 1890–1902 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ervin V., Layton W., Neda M.: Numerical analysis of a higher order time relaxation model of fluids. Int. J. Numer. Anal. Model. 4, 648–670 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Ervin, V., Layton, W., Neda, M.: Numerical analysis of filter based stabilization for evolution equations. Technical report, TR-MATH 10-01. http://www.mathematics.pitt.edu/research/technical-reports.php (2010)

  20. Fischer P., Mullen J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris 332(1), 265 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gunzburger M.D.: Finite Element Methods for Viscous Incompressible Flows—A Guide to Theory, Practices, and Algorithms. Academic Press, New York (1989)

    Google Scholar 

  22. Galdi G.P.: Lectures in Mathematical Fluid Dynamics. Birkhäuser-Verlag, Boston (2000)

    Google Scholar 

  23. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I. Springer, Berlin (1994)

    Book  Google Scholar 

  24. Garnier E., Adams N., Sagaut P.: Large Eddy Simulation for Compressible Flows. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  25. Germano M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Girault V., Raviart P.-A.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  27. Green A.E., Taylor G.I.: Mechanism of the production of small eddies from larger ones. Proc. R. Soc. A 158, 499–521 (1937)

    Article  ADS  MATH  Google Scholar 

  28. Guenanff, R.: Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic noises. PhD thesis, Department of Mathematics, Université Rennes 1, Rennes, France (2004)

  29. Hecht, F., Pironneau, O.: FreeFEM++. http://www.freefem.org

  30. Heywood J.G., Rannacher R.: Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  31. Hunt, J.C., Wray, A.A., Moin, P.: Eddies stream and convergence zones in turbulent flows. CTR report, CTR-S88 (1988)

  32. John V.: Reference values for drag and lift of a two-dimensional time-dependent flow around the cylinder. Int. J. Numer. Methods Fluids 44, 777–788 (2004)

    Article  ADS  MATH  Google Scholar 

  33. John V., Layton W.: Analysis of numerical errors in large eddy simulation. SIAM J. Numer. Anal. 40, 995–1020 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach (1969)

  35. Layton W.: Superconvergence of finite element discretization of time relaxation models of advection. BIT 47, 565–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Layton W., Manica C., Neda M., Olshanskii M., Rebholz L.: On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228(9), 3433–3447 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Layton W., Manica C., Neda M., Rebholz L.: The joint helicity-energy cascade for homogeneous, isotropic turbulence generated by approximate deconvolution models. Adv. Appl. Fluid Mech. 4, 1–46 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Layton W., Neda M.: Truncation of scales by time relaxation. JMAA 325, 788–807 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  39. Levich E., Tsinober A.: On the role of helical structures in 3-dimensional turbulent flows. Phys. Lett. 93A, 293–297 (1983)

    MathSciNet  ADS  Google Scholar 

  40. Levich E., Tsinober A.: Helical structures, fractal dimensions and renormalization group approach in homogeneous turbulence. Phys. Lett. 96A, 292–297 (1983)

    MathSciNet  ADS  Google Scholar 

  41. Lilly D.K.: The structure, energetics and propagation of rotating convection storms, II: helicity and storm stabilization. J Atmos. Sci. 43, 126–140 (1986)

    Article  ADS  Google Scholar 

  42. Manica, C., Kaya Merdan, S.: Convergence analysis of the finite element method for a fundamental model in turbulence. Technical report, University of Pittsburgh (2006)

  43. Mathew J., Lechner R., Foysi H., Sesterhenn J., Friedrich R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15, 2279–2289 (2003)

    Article  ADS  Google Scholar 

  44. Mullen J.S., Fischer P.F.: Filtering techniques for complex geometry fluid flows. Commun. Num. Meth. Eng. 15, 9–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rosenau Ph.: Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Phys. Rev. A 40, 7193 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  46. Sagaut P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    MATH  Google Scholar 

  47. Schochet S., Tadmor E.: The regularized Chapman-Enskog expansion for scalar conservation laws. Arch. Ration. Mech. Anal. 119, 95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shäfer, M., Turek, S.: Benchmark computations of laminar flow around cylinder. In: Flow Simulation with High-Performance Computers II. Vieweg (1996)

  49. Stanculescu I.: Existence theory of abstract approximate deconvolution models of turbulence. Annali dell’Universitá di Ferrara 54, 145–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stolz S., Adams N.A., Kleiser L.: The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13, 2985 (2001)

    Article  ADS  Google Scholar 

  51. Stolz S., Adams N.A., Kleiser L.: An approximate deconvolution model for large eddy simulation with application to wall-bounded flows. Phys. Fluids 13, 997 (2001)

    Article  ADS  Google Scholar 

  52. Stolz, S., Adams, N.A., Kleiser, L.: The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction. In: Friedrich, R., Rodi, W. Advances in LES of Complex Flows, Kluwer, Dordrecht (2002)

  53. Stolz S., Adams N.A.: On the approximate deconvolution procedure for LES. Phys. Fluids II, 1699–1701 (1999)

    Article  ADS  Google Scholar 

  54. Tafti D.: Comparison of some upwind-biased high-order formulations with a second order central-difference scheme for time integration of the incompressible Navier-Stokes equations. Comput. Fluids 25, 647–665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Taylor G.I.: On decay of vortices in a viscous fluid. Phil. Mag. 46, 671–674 (1923)

    Google Scholar 

  56. Tsinober A., Levich E.: On the helical nature of 3-dimensional coherent structures in turbulent flows. Phys. Lett. 99, 321–324 (1983)

    Article  Google Scholar 

  57. Visbal M.R., Rizzetta D.P.: Large eddy simulation on curvilinear grids using compact differencing and filtering schemes. J. Fluids Eng. 124, 836–847 (2002)

    Article  Google Scholar 

  58. Vreman A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670–3681 (2004)

    Article  ADS  Google Scholar 

  59. Wang X.: The time averaged energy dissipation rates for shear flows. Physica D 99, 555–563 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Layton.

Additional information

Communicated by G.P. Galdi

W. Layton was partially supported by the NSF under grant DMS-0810385; L. G. Rebholz was partially supported by the NSF under grant DMS-0914478; and C. Trenchea was partially supported by the Air Force under grant FA9550-09-1-0058.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layton, W., Rebholz, L.G. & Trenchea, C. Modular Nonlinear Filter Stabilization of Methods for Higher Reynolds Numbers Flow. J. Math. Fluid Mech. 14, 325–354 (2012). https://doi.org/10.1007/s00021-011-0072-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-011-0072-z

Mathematics Subject Classification (2010)

Keywords

Navigation