Skip to main content
Log in

A New Hybrid WENO Scheme with the High-Frequency Region for Hyperbolic Conservation Laws

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a new kind of hybrid method based on the weighted essentially non-oscillatory (WENO) type reconstruction is proposed to solve hyperbolic conservation laws. Comparing the WENO schemes with/without hybridization, the hybrid one can resolve more details in the region containing multi-scale structures and achieve higher resolution in the smooth region; meanwhile, the essentially oscillation-free solution could also be obtained. By adapting the original smoothness indicator in the WENO reconstruction, the stencil is distinguished into three types: smooth, non-smooth, and high-frequency region. In the smooth region, the linear reconstruction is used and the non-smooth region with the WENO reconstruction. In the high-frequency region, the mixed scheme of the linear and WENO schemes is adopted with the smoothness amplification factor, which could capture high-frequency wave efficiently. Spectral analysis and numerous examples are presented to demonstrate the robustness and performance of the hybrid scheme for hyperbolic conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  1. Acker, F., de R. Borges, R.B., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127(1), 27–51 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Baeza, A., Burger, R., Mulet, P., Zorio, D.: On the efficient computation of smoothness indicators for a class of WENO reconstructions. J. Sci. Comput. 80(2), 1240–1263 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bhise, A.A., Samala, R.: An efficient hybrid WENO scheme with a problem independent discontinuity locator. Int. J. Numer. Methods Fluids 91(1), 1–28 (2019)

    MathSciNet  Google Scholar 

  5. Borges, R., Carmona, M., Costa, B., Don, W.-S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Castro, M., Costa, B., Don, W.-S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Costa, B., Don, W.-S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224(2), 970–991 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Don, W.-S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), A691–A711 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Fidalgo, J.F., Nogueira, X., Ramirez, L., Colominas, I.: An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows. Comput. Methods Appl. Mech. Eng. 335, 91–127 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Fu, L.: A hybrid method with TENO based discontinuity indicator for hyperbolic conservation laws. Commun. Comput. Phys. 26(4), 973–1007 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232(1), 68–86 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115(2), 319–338 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, iii. J. Comput. Phys. 131(1), 3–47 (1987)

    MATH  Google Scholar 

  18. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    MATH  Google Scholar 

  19. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Kim, C.H., Ha, Y., Yoon, J.: Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes. J. Sci. Comput. 67(1), 299–323 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3/4), 323–338 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Li, G., Lu, C., Qiu, J.: Hybrid well-balanced WENO schemes with different indicators for shallow water equations. J. Sci. Comput. 51, 527–559 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Li, G., Qiu, J.: Hybrid WENO schemes with different indicators on curvilinear grid. Adv. Comput. Math. 40, 747–772 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Luo, X., Wu, S.-P.: Improvement of the WENO-Z+ scheme. Comput. Fluids 218, 104855 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219(2), 489–497 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192(2), 365–386 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Sedov, L.I., Friedman, M., Street, R.E.: Similarity and dimensional methods in mechanics. Phys. Today 13(9), 50–52 (2009)

    Google Scholar 

  34. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186(2), 690–696 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Sun, Z., Wang, S., Chang, L.-B., Xing, Y., Xiu, D.: Convolution neural network shock detector for numerical solution of conservation laws. Commun. Comput. Phys. 28(5), 2075–2108 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Suresh, A., Huynth, H.: Accurate monotonicity-preserving schemes with Runge-Kutta time stepping. J. Comput. Phys. 136(1), 83–99 (1997)

    MathSciNet  MATH  Google Scholar 

  39. Wang, B.S., Don, W.-S., Gao, Z., Wang, Y.H., Wen, X.: Hybrid compact-WENO finite difference scheme with radial basis function based shock detection method for hyperbolic conservation laws. SIAM J. Sci. Comput. 40(6), A3699–A3714 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Wen, X., Don, W.-S., Gao, Z., Hesthaven, J.S.: An edge detector based on artificial neural network with application to hybrid Compact-WENO finite difference scheme. J. Sci. Comput. 83, 49 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    MathSciNet  MATH  Google Scholar 

  42. Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228(11), 4248–4272 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable WENO scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, S., Zhu, J., Shu, C.-W.: A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Adv. Aerodyn. 1(1), 1–25 (2019)

    Google Scholar 

  45. Zhao, Z., Chen, Y., Qiu, J.: A hybrid Hermite WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 405, 109175 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Z., Zhu, J., Chen, Y., Qiu, J.: A new hybrid WENO scheme for hyperbolic conservation laws. Comput. Fluids 179, 422–436 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228(18), 6957–6976 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Xia.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Yinhua Xia: Research supported by the National Numerical Windtunnel Project NNW2019ZT4-B08 and the NSFC grant No. 11871449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Xia, Y. A New Hybrid WENO Scheme with the High-Frequency Region for Hyperbolic Conservation Laws. Commun. Appl. Math. Comput. 5, 199–234 (2023). https://doi.org/10.1007/s42967-021-00153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00153-2

Keywords

Mathematics Subject Classification

Navigation