Skip to main content
Log in

Second kind boundary integral equation for multi-subdomain diffusion problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider isotropic scalar diffusion boundary value problems whose diffusion coefficients are piecewise constant with respect to a partition of space into Lipschitz subdomains. We allow so-called material junctions where three or more subdomains may abut. We derive a boundary integral equation of the second kind posed on the skeleton of the subdomain partition that involves, as unknown, only one trace function at each point of each interface. We prove the well-posedness of the corresponding boundary integral equations. We also report numerical tests for Galerkin boundary element discretisations, in which the new approach proves to be highly competitive compared to the well-established first kind direct single-trace boundary integral formulation. In particular, GMRES seems to enjoy fast convergence independent of the mesh resolution for the discrete second kind BIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovich, M.S.: Sobolev Spaces, their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer Monographs in Mathematics. Springer, Cham (2015)

    Book  Google Scholar 

  2. Bonito, A., Guermond, J.-L., Luddens, F.: Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2), 498–512 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buffa, A.: Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43(1), 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buffa, A., Hiptmair, R.: Galerkin boundary element methods for electromagnetic scattering Topics in Computational Wave Propagation, Volume 31 of Lect. Notes Comput. Sci. Eng., pp. 83–124. Springer, Berlin (2003)

  5. Chang, Y., Harrington, R.: A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25, 789–795 (1977)

    Article  Google Scholar 

  6. Claeys, X.: A single trace integral formulation of the second kind for acoustic scattering. Technical Report no. 2011-14, SAM, ETH Zürich (2011)

  7. Claeys, X., Hiptmair, R.: Electromagnetic scattering at composite objects: A novel multi-trace boundary integral formulation. ESAIM: Math. Modell. Numer. Anal. 46, 1421–1445 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Claeys, X., Hiptmair, R.: Multi-trace boundary integral formulation for acoustic scattering by composite structures. Comm. Pure Appl. Math. 66(8), 1163–1201 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Claeys, X., Hiptmair, R., Jerez-Hanckes, C.: Multi-trace boundary integral equations. In: Direct and Inverse Problems in Wave Propagation and Applications. I. Graham, U. Langer, M. Sini, M. Melenk

  10. Claeys, X., Hiptmair, R., Jerez-Hanckes, C., Pintarelli, S.: Novel multitrace boundary integral equations for transmission boundary value problems Unified Transform for Boundary Value Problems, pp. 227–258. SIAM, Philadelphia (2015)

  11. Claeys, X., Hiptmair, R., Spindler, E.: Second-kind boundary integral equations for scattering at composite partly impenetrable objects. Technical Report 2015-19, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2015)

  12. Claeys, X., Hiptmair, R., Spindler, E.: A second-kind Galerkin boundary element method for scattering at composite objects. BIT 55(1), 33–57 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Claeys, X., Hiptmair, R., Spindler, E.: Second-kind boundary integral equations for electromagnetic scattering at composite objects. Preprint 2016-43, SAM, ETH Zurich, Switzerland (2016)

  14. Coifman, R.R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. of Math. (2) 116(2), 361–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coifman, R.R., Jones, P.W., Semmes, S.: Two elementary proofs of the L 2 boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math. Soc. 2(3), 553–564 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dahlberg, B.E.J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3), 275–288 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dahlberg, B.E.J.: On the Poisson integral for Lipschitz and C 1-domains. Studia Math. 66(1), 13–24 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Geuzaine, C., Gmsh, J.-F. Remacle.: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Greengard, L., Lee, J.-Y.: Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions. J. Comput. Phys. 231(6), 2389–2395 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hackbusch, W.: Integral Equations, Volume 120 of International Series of Numerical Mathematics. Birkhäuser Verlag, Basel (1995). Theory and numerical treatment. Translated and revised by the author from the 1989 German original

    Google Scholar 

  23. Hardy, G.H., Littlewood, J. E., Pólya, G.: Inequalities, 2nd edn. University Press, Cambridge (1952)

    MATH  Google Scholar 

  24. Harrington, R.F.: Boundary integral formulations for homogeneous material bodies. J. Electromagn. Waves Appl. 3(1), 1–15 (1989)

    Article  Google Scholar 

  25. Helsing, J.: The effective conductivity of random checkerboards. J. Comput. Phys. 230(4), 1171–1181 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Comput. Math. 37(1), 39–91 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hiptmair, R., Kielhorn, L.: BETL — a generic boundary element template library. Technical Report 2012-36, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2012)

  28. Hsiao, G.C., Steinbach, O., Wendland, W.L.: Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math. 125, 521–537 (2000). Numerical analysis 2000, Vol. VI, Ordinary differential equations and integral equations

    Article  MATH  MathSciNet  Google Scholar 

  29. Kleinmann, R.E., Martin, P.A.: On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48(2), 307–325 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Langer, U., Steinbach, O.: Boundary element tearing and interconnecting methods. Computing 71, 205–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Mercier, D.: Minimal regularity of the solutions of some transmission problems. Math. Methods Appl. Sci. 26(4), 321–348 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Miller, E., Poggio, A: Computer Techniques for Electromagnetics, volume 7, chapter Chap. 4, Integral Equation Solutions of Three-Dimensional Scattering Problems. Pergamon Press (1973)

  34. Nicaise, S., Sändig, A.-M.: General interface problems. I, II. Math. Methods Appl. Sci. 17(6), 395–429,431–450 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Of, G., Steinbach, O.: The all-floating boundary element tearing and interconnecting method. J. Numer. Math. 17(4), 277–298 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Of, G., Steinbach, O., Wendland, W.L.: Boundary element tearing and interconnecting domain decomposition methods Multifield Problems in Solid and Fluid Mechanics, Volume 28 of Lect. Notes Appl. Comput. Mech., pp. 461–490. Springer, Berlin (2006)

  37. Opic, B., Kufner, A.: Hardy-type inequalities, volume 219 of Pitman Research Notes in Mathematics Series. Longman Scientific &amp. Technical, Harlow (1990)

    Google Scholar 

  38. Peng, Z., Lim, K.-H., Lee, J.-F.: Computations of electromagnetic wave scattering from penetrable composite targets using a surface integral equation method with multiple traces. IEEE Trans. Antennas Propag. 61(1), 256–270 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Peng, Z., Lim, K.-H., Lee, J.-F.: A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities. J. Comput. Phys. 280, 626–642 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  40. von Petersdorff, T.: Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Met. App. Sc. 11, 185–213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Petzoldt, M.: Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen 20(2), 431–455 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  43. Rumsey, V.H.: Reaction concept in electromagnetic theory. Phys. Rev. 94, 1483–1491 (Jun 1954)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sauter, S.A., Schwab, C.: Boundary Element Methods, Volume 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011)

    Google Scholar 

  45. Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Spindler, E. Second kind single-trace boundary integral formulations for scattering at composite objects. PhD thesis, Seminar of Applied Mathematics, ETH Zürich, 2016. Diss. no 23579, Prof. Dr. Ralf Hiptmair

  47. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of X.Claeys received support from the ANR research grant ANR-15-CE23-0017-01. E. Spindler was supported by SNF grant 200021_137873/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Claeys.

Additional information

Communicated by: Leslie Greengard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claeys, X., Hiptmair, R. & Spindler, E. Second kind boundary integral equation for multi-subdomain diffusion problems. Adv Comput Math 43, 1075–1101 (2017). https://doi.org/10.1007/s10444-017-9517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9517-0

Keywords

Mathematics Subject Classification (2010)

Navigation