Skip to main content
Log in

A High Order Mixed-FEM for Diffusion Problems on Curved Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze a high order mixed finite element method for diffusion problems with Dirichlet boundary condition on a domain \(\Omega \) with curved boundary \(\Gamma \). The method is based on approximating \(\Omega \) by a polygonal subdomain \(\mathrm {D}_{h}\), with boundary \(\Gamma _h\), where a high order conforming Galerkin method is considered to compute the solution. To approximate the Dirichlet data on the computational boundary \(\Gamma _h\), we employ a transferring technique based on integrating the extrapolated discrete gradient along segments joining \(\Gamma _h\) and \(\Gamma \). Considering general finite dimensional subspaces we prove that the resulting Galerkin scheme, which is \({\mathbf {H}}(\mathrm {div}\,; \mathrm {D}_{h})\)-conforming, is well-posed provided suitable hypotheses on the aforementioned subspaces and integration segments. A feasible choice of discrete spaces is given by Raviart–Thomas elements of order \(k\ge 0\) for the vectorial variable and discontinuous polynomials of degree k for the scalar variable, yielding optimal convergence if the distance between \(\Gamma _h\) and \(\Gamma \) is at most of the order of the meshsize h. We also approximate the solution in \(\mathrm {D}_{h}^{c}\,{:}{=}\,\Omega \backslash \overline{\mathrm {D}_{h}}\) and derive the corresponding error estimates. Numerical experiments illustrate the performance of the scheme and validate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions for H(div) on simplices. Numer. Math. 122(2), 197–225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J.H., Dupont, T., Thomée, V.: Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections. Math. Comput. 26(120), 869–879 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63, 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  6. Bertrand, F., Starke, G.: Parametric Raviart–Thomas elements for mixed methods on domains with curved surfaces. SIAM J. Numer. Anal. 54(6), 3648–3667 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertrand, F., Müzenmaier, S., Starke, G.: First-order system least squares on curved boundaries: higher-order Raviart–Thomas elements. SIAM J. Numer. Anal. 52, 3165–3180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Book  MATH  Google Scholar 

  10. Colmenares, E., Gatica, G.N., Oyarzua, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. J. Sci. Comput. 42(1), 144–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Sayas, F.-J., Solano, M.: Coupling at a distance HDG and BEM. SIAM J. Sci. Comput. 34(1), A2–A47 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34(1), A497–A519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Solano, M.: Solving convection–diffusion problems on curved domains by extensions from subdomains. J. Sci. Comput. 59(2), 512–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83(286), 665–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51(3), 582–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, S., Cai, W.: Analysis and application of an orthogonal nodal basis on triangles for discontinuous spectral element methods. Appl. Numer. Anal. Comput. Math. 2(3), 326–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  20. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method, Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  21. Gatica, G.N., Ruiz-Baier, R., Tierra, G.: A mixed finite element method for Darcy s equations with pressure dependent porosity. Math. Comput. 85(297), 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  23. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenoir, M.: Optimal isoparametric finite elements and errors estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mori, Y.: Convergence proof of the velocity field for a Stokes flow immersed boundary method. Commun. Pure Appl. Math. 160, 1213–1263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MATH  Google Scholar 

  28. Qiu, W., Solano, M., Vega, P.: A high order HDG method for curved-interface problems via approximations from straight triangulations. J. Sci. Comput. 69(3), 1384–1407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roberts, J.E., Thomas, J.-M.: Mixed and Hybrid Methods. Handbook of Numerical Analysis, vol. II, pp. 523–639. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  30. Solano, M., Vargas, F.: A high order HDG method for Stokes flow in curved domains. https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=227

  31. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Zúñiga.

Additional information

R. Oyarzúa acknowledges partial support from CONICYT-Chile through Project Fondecyt 1161325 and Project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal and from Universidad del Bío-Bío through DIUBB Project GI 171508/VC. M. Solano acknowledges partial support from CONICYT-Chile through Project Fondecyt 1160320 and Project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. P. Zúñiga acknowledges Becas-Chile Program.

Appendices

Appendix

In this section we use the equivalence of the the norms \({\vert \vert \vert \cdot \vert \vert \vert }_e\) and \(\Vert \cdot \Vert _{0,{\widetilde{K}}_{ext}^{e}}\) (cf. Lemma 3.4) to provide an estimate of \({\widetilde{C}}_{ext}^{e}\) defined in (2.14).

Appendix A: Estimates of \({\widetilde{C}}_{ext}^{e}\)

The following result extends the estimation in [15, Lemma A.1] to the case when the norm \(\Vert \cdot \Vert _{0,{\widetilde{K}}_{ext}^{e}}\) is considered.

Lemma A.1

Let e be any edge in \({\mathcal {E}}_{h}^{\partial }\). Let \({\mathcal {L}}\) be the line segment with endpoints given by the center of the biggest ball contained in \(K^{e}\), and the point of the set \({\widetilde{K}}_{ext}\) where the polynomial p achieves its maximum. Suppose that assumption (A.1) holds. Assume further that \({\mathcal {L}}\) is contained in interior of the closure of the set \(K^{e}\cup {\widetilde{K}}_{ext}^{e}\), denoted by \(B^{e}\). Then, for any \(p\in \mathrm {P}_{l}(B^{e})\) we have

$$\begin{aligned} \Vert p\Vert _{0,{\widetilde{K}}_{ext}^{e}}\le C({\widetilde{r}}_{e})^{1/2}(l+1)^{2}\eta _{e}^{l}\Vert p\Vert _{0,K^{e}}, \end{aligned}$$

where \({\widetilde{r}}_{e}\,{:}{=}\,{\widetilde{H}}_{e}/h_{e}^{\perp }\) and \(\eta _{e}\,{:}{=}\,1+2\gamma _{K^e} {\widetilde{r}}_{e}+2\Big (\gamma _{K^e}{\widetilde{r}}_{e}(1+\gamma _{K^e} {\widetilde{r}}_{e})\Big )^{1/2}\). Here the constant C solely depends on the shape-regularity constant \(\gamma _{K^e}\).

Proof

We begin by noting that \({\mathcal {L}}\) can be subdivided as

$$\begin{aligned} I_{int}^{e}\,{:}{=}\, \Big \{{\mathbf {x}}\in {\mathcal {L}}:\;{\mathbf {x}}\cap K^{e}\ne \emptyset \Big \}{\quad \hbox {and}\quad }I_{ext}^{e}\,{:}{=}\, \Big \{{\mathbf {x}}\in {\mathcal {L}}:\;{\mathbf {x}}\cap {\widetilde{K}}_{ext}^{e}\ne \emptyset \Big \}, \end{aligned}$$

from which

$$\begin{aligned} \displaystyle \Vert p\Vert _{0,{\widetilde{K}}_{ext}^{e}}^{2}\le |{\widetilde{K}}_{ext}^{e}|\max _{{\mathbf {x}}\in {\widetilde{K}}_{ext}^{e}}|p({\mathbf {x}})|\le |{\widetilde{K}}_{ext}^{e}|\Vert p\Vert _{\mathrm {L}^{\infty }(I_{ext}^{e})}^{2}\le C{h_{K^{e}}{\widetilde{H}}_{e}}\Vert p\Vert _{\mathrm {L}^{\infty }(I_{ext}^{e})}^{2}, \end{aligned}$$

owing to the relation \(|{\widetilde{K}}_{ext}^{e}|\le C{h_{K^{e}}{\widetilde{H}}_{e}}\). Next, we proceed as in [15, Lemma A.1] and prove that \(\Vert p\Vert _{\mathrm {L}^{\infty }(I_{ext}^{e})}\le \eta _{e}^{l}\Vert p\Vert _{\mathrm {L}^{\infty }(I_{int}^{e})}\). In fact, in virtue of [11, Lemma 4.3], this is fulfilled by observing that

$$\begin{aligned} \displaystyle \frac{|I_{ext}^{e}|}{|I_{int}^{e}|}\le \frac{|I_{ext}^{e}|}{\rho _{K^{e}}} \le \frac{{\widetilde{H}}_{e}}{\rho _{K^{e}}} \le \gamma _{K^e}\frac{{\widetilde{H}}_{e}}{h_{K^{e}}}\le \gamma _{K^e}{\widetilde{r}}_{e}, \end{aligned}$$

where \(\rho _{K^{e}}\) is the radius of the biggest ball contained in \(K^{e}\), since \(h_{e}^{\perp }\le h_{K^{e}}\) and \(h_{K^{e}}\le \gamma _{K^e} \rho _{K^{e}}\). In addition, by standard scaling arguments there holds

$$\begin{aligned} \Vert p\Vert _{\mathrm {L}^{\infty }(I_{int}^{e})}\le \Vert p\Vert _{\mathrm {L}^{\infty }(K^{e})}\le C {\left( h_{K^{e}}\right) ^{-1}}(l+1)^{2}\Vert p\Vert _{0,K^{e}}. \end{aligned}$$

Finally, the proof is completed by noting that \(h_{K^{e}}^{-1}\le \left( h_{e}^{\perp }\right) ^{-1}\le {\widetilde{r}}_{e}/{\widetilde{H}}_{e}\). \(\square \)

The previous result, together with the estimates in Lemma 3.4, implies that

$$\begin{aligned} {\widetilde{C}}_{ext}^{e} \le {C}(C_1^e)^{-1}C_{2}^e(l+1)^{2}\eta _{e}^{l}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzúa, R., Solano, M. & Zúñiga, P. A High Order Mixed-FEM for Diffusion Problems on Curved Domains. J Sci Comput 79, 49–78 (2019). https://doi.org/10.1007/s10915-018-0840-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0840-5

Keywords

Mathematics Subject Classification

Navigation