Skip to main content
Log in

Multiple traces boundary integral formulation for Helmholtz transmission problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a novel boundary integral formulation of the Helmholtz transmission problem for bounded composite scatterers (that is, piecewise constant material parameters in “subdomains”) that directly lends itself to operator preconditioning via Calderón projectors. The method relies on local traces on subdomains and weak enforcement of transmission conditions. The variational formulation is set in Cartesian products of standard Dirichlet and special Neumann trace spaces for which restriction and extension by zero are well defined. In particular, the Neumann trace spaces over each subdomain boundary are built as piecewise \(\widetilde{H}^{-1/2}\)-distributions over each associated interface. Through the use of interior Calderón projectors, the problem is cast in variational Galerkin form with an operator matrix whose diagonal is composed of block boundary integral operators associated with the subdomains. We show existence and uniqueness of solutions based on an extension of Lions’ projection lemma for non-closed subspaces. We also investigate asymptotic quasi-optimality of conforming boundary element Galerkin discretization. Numerical experiments in 2-D confirm the efficacy of the method and a performance matching that of another widely used boundary element discretization. They also demonstrate its amenability to different types of preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathematics & Applications, vol. 62. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Bony, J.M.: Cours d’analyse: Théorie des distributions et analyse de Fourier. Éditions de l’École Polytechnique, Palaiseau, France (2001)

    Google Scholar 

  3. Buffa, A., Hiptmair, R.: Regularized combined field integral equations. Numer. Math. 100(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell equations on Lipschitz domains. Numer. Math. 95(3), 459–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christiansen, S., Nédélec, J.C.: Des préconditionneurs pour la résolution numérique des équations intégrales de frontiére de l’acoustique. C. R. Acad. Sci. Paris, Ser. I Math 330(7), 617–622 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN 33(3), 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M., Stephan, E.: A direct bounary equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    MATH  Google Scholar 

  10. Farhat, C., Roux, F.X.: Implicit parallel processing in structural mechanics. Comput. Mech. Adv. 2(1), 124 (1994)

    MathSciNet  Google Scholar 

  11. Frühauf, F., Gebauer, B., Scherzer, O.: Detecting interfaces in a parabolic-elliptic problem from surface measurements. SIAM J. Numer. Anal. 45(2), 810–836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gatica, G.N., Hsiao, G.C., Mellado, M.E.: A domain decomposition method based on BEM and FEM for linear exterior boundary value problems. J. Math. Anal. Appl. 262(1), 70–86 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haase, G., Heise, B., Kuhn, M., Langer, U.: Adaptive domain decomposition methods for finite and boundary element equations. In: Wendland, W. (ed.) Boundary Element Topics. Proceedings of the Final Conference of the Priority Research Programme “Boundary Element Methods” 1989–1995 of the German Research Foundation, 2–4 Oct 1995 in Stuttgart, Germany, pp. 121–147. Springer, Berlin (1997)

  14. Hammer, M., Schweitzer, D., Michel, B., Thamm, E., Kolb, A.: Single scattering by red blood cells. Appl. Opt. 37(31), 7410–7418 (1998)

    Article  Google Scholar 

  15. Harrington, R.: Boundary integral formulations for homogeneous material bodies. J. Electromagn. Waves Appl. 3(1), 1–15 (1989)

    Article  Google Scholar 

  16. Hazard, C., Lenoir, M.: On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J. Math. Anal. 27(6), 1597–1630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52(5), 699–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Tech. Rep. 35, SAM ETH Zurich (2010)

  19. Hiptmair, R., Meury, P.: Stabilized FEM-BEM coupling for Helmholtz transmission problems. SIAM J. Numer. Anal. 44, 2107–2130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsiao, G., Wendland, W.: Domain decomposition in boundary element methods. In: Glowinski, R., Kuznetsov, Y., Meurant, G., Périaux, J., Widlund, O. (eds.) Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 41–49. SIAM Philadelphia (1991)

  21. Hsiao, G.C.: Boundary element methods—An overview. Appl. Numer. Math. 56(10–11), 1356–1369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hsiao, G.C., Steinbach, O., Wendland, W.L.: Domain decomposition methods via boundary integral equations. J. Comp. Appl. Math. 125(1–2), 521–537 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  24. Jerison, D., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kellogg, R.B.: Higher order singularities for interface problems. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 589–602. Academic, New York (1972)

    Google Scholar 

  26. Kenig, C.E.: Carleman estimates, uniform Sobolev inequalities for second-order differential operators, and unique continuation theorems. In: Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), vol. 1, pp. 948–960. Amer. Math. Soc., Providence, RI (1987)

    Google Scholar 

  27. Kondrat’ev, V.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)

    MATH  Google Scholar 

  28. Kreß, R., Roach, G.F.: Transmission problems for the Helmholtz equation. J. Math. Phys. 19(6), 1433–1437 (1978)

    Article  MATH  Google Scholar 

  29. Laliena, A.R., Rapún, M.L., Sayas, F.J.: Symmetric boundary integral formulations for Helmholtz transmission problems. Appl. Numer. Math. 59(11), 2814–2823 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Langer, U., Steinbach, O.: Boundary element tearing and interconnecting methods. Computing 71(3), 205–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, J.L.: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer, Berlin (1961)

    Google Scholar 

  32. Lions, J.L., Magenes, E.: Problèmes aux Limites Non Homogènes, vol. 1. Dunod, Paris, France (1968)

    Google Scholar 

  33. Mardal, K., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear. Algebr. 18(1), 1–40 (2010)

    Article  MathSciNet  Google Scholar 

  34. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  35. McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular integral equation on an interval. Adv. Comput. Math. 11(4), 271–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meury, P.: Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering. ETH Dissertation No. 17320, ETH Zürich, Zürich, Switzerland (2007)

  37. Müller, C.: On the behavior of the solutions of the differential equation ΔU = F(x,U) in the neighborhood of a point. Comm. Pure Appl. Math. 7, 505–515 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nazarov, S., Plamenevskii, B.: Elliptic Problems in Domains with Piecewise Smooth Boundaries, Expositions in Mathematics, vol. 13. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  39. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Applied Mathematical Sciences, vol. 44. Springer, Berlin (2001)

    MATH  Google Scholar 

  40. Nicaise, S., Sändig, A.M.: General interface problems I/II. Math. Methods Appl. Sci. 17, 395–450 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics, vol. 37. Springer, New York (2000)

    Google Scholar 

  42. Sadiku, M.: Numerical Techniques in Electromagnetics, 2nd edn. CRC Press LLC, New York (1996)

    Google Scholar 

  43. Sauter, S., Schwab, C.: Boundary Element Methods, Springer Series in Computational Mathematics, vol. 39. Springer, Heidelberg (2010)

    Google Scholar 

  44. Schatz, A.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sommerfeld, A.: Partial Differential Equations in Physics. Pure and Applied Mathematics. Academic, New York (1949)

    Google Scholar 

  46. Steinbach, O.: Numerical approximation methods for elliptic boundary value problems. Springer, New York (2008)

    Book  MATH  Google Scholar 

  47. Steinbach, O., Wendland, W.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9, 191–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Steinbach, O., Windisch, M.: Robust boundary element domain decomposition solvers in acoustics. Tech. Rep. 9, Institut für Numerische Mathematik, TU Graz (2009)

  49. von Petersdorff, T.: Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11, 185–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Warnick, K.: Numerical Analysis for Electromagnetic Integral Equations. Artech House, Norwood, MA (2008)

    MATH  Google Scholar 

  51. Webb, A.: Introduction to Biomedical Imaging. Wiley, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hiptmair.

Additional information

Communicated by Charles Micchelli.

This work was funded by the ETH Fellowship “Boundary Element Methods for Multi-Dielectric Electromagnetic Scattering”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiptmair, R., Jerez-Hanckes, C. Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv Comput Math 37, 39–91 (2012). https://doi.org/10.1007/s10444-011-9194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9194-3

Keywords

Mathematics Subject Classifications (2010)

Navigation