Skip to main content
Log in

A second-kind Galerkin boundary element method for scattering at composite objects

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We consider the scattering of time-harmonic acoustic waves at objects composed of several homogeneous parts with different material properties. In Claeys (A single trace integral formulation of the second kind for acoustic scattering, 2011), a novel second-kind boundary integral formulation for this scattering problem was proposed, that relies on skeleton Cauchy data as unknowns. We recast it into a variational problem set in \(L^{2}\) and investigate its Galerkin boundary element discretization from a theoretical and algorithmic point of view. Empiric studies demonstrate the competitive accuracy and superior conditioning of the new approach compared to a widely used Galerkin boundary element approach based on a first-kind boundary integral formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Capital letters are used to refer to functions defined over a volume domain.

  2. Notations for function spaces (Sobolev spaces) follow the usual conventions, see [7, 17]. In particular, we write \(H_\mathrm{{loc}}^{s}({{\mathbb {R}}^{d}})\) for functions that belong to \(H^{s}(K)\) for any compact subset \(K\) of \({\mathbb {R}}^{d}\), see [21, Definition 2.6.1]. \(H_\mathrm{{comp}}^{s}({\Omega })\) contains all distributions in \(H_\mathrm{{loc}}^{s}({\Omega })\) that have compact support in \(\Omega \), see [21, Definition 2.6.5].

  3. \(H_\mathrm{{loc}}^{1}({\Delta ,\overline{\Omega }}):=\{U\in H_\mathrm{{loc}}^{1}({\overline{\Omega }})\,|\, \Delta U \in L_\mathrm{{comp}}^{2}({\overline{\Omega }}) \}\), see [21, Equation (2.108)].

  4. Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is reserved for Dirichlet traces, and Greek symbols for Neumann traces.

References

  1. Digital library of mathematical functions. http://dlmf.nist.gov/. Accessed 29 August 2011

  2. NGSolve finite element library. http://sourceforge.net/apps/mediawiki/ngsolve. Accessed 02 May 2012

  3. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55. Dover publications, New York (1964)

  4. Ball, J.M., Capdeboscq, Y., Tsering Xiao, B.: On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Meth. Appl. Sci. arXiv:1201.2006v1 [math.AP] (2012)

  5. Barnett, A., Greengard, L.: A new integral representation for quasi-periodic scattering problems in two dimensions. BIT Numer. Math. 51(1), 67–90 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Claeys, X.: A single trace integral formulation of the second kind for acoustic scattering. Research Report 2011–14, Seminar for Applied Mathematics, ETH Zürich (2011)

  7. Claeys, X., Hiptmair, R., Jerez-Hanckes, C.: Multitrace boundary integral equations. In: Graham, I.G., Langer, U., Melenk, J.M., Sini, M. (eds.) Direct and inverse problems in wave propagation and applications. Radon series on computational and applied mathematics, vol. 14, pp. 51–100. De Gruyter, Berlin/Boston (2013)

    Google Scholar 

  8. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Heidelberg (1998)

  9. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Costabel, M., Stephan, E.P.: A direct boundary equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Greengard, L., Lee, J.Y.: Short note: Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions. J. Comput. Phys. 231(6), 2389–2395 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harrington, R.F.: Boundary integral formulations for homogeneous material bodies. J. Electromagn. Waves Appl. 3(1), 1–15 (1989)

    Article  Google Scholar 

  13. Hazard, C., Lenoir, M.: On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J. Math. Anal. 27(6), 1597–1630 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Springer, Berlin Heidelberg (2008)

    Book  MATH  Google Scholar 

  15. Hohage, T., Nannen, L.: Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47(2), 972–996 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kress, R., Roach, G.F.: Transmission problems for the Helmholtz equation. J. Math. Phys. 19(6), 1433–1437 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  18. Müller, C.: Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin, Heidelberg, New York (1969)

  19. Poggio, A.J., Miller, E.K.: Integral equation solution of three-dimensional scattering problems. In: Mittra, R. (ed.) Computer techniques for electromagnetics, chapter 4, pp. 159–263. Pergamon, New York (1973)

  20. Rokhlin, V.: Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5(3), 257–272 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sauter, S.A., Schwab, C.: Boundary element methods. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  22. Schwab, C.: Variable order composite quadrature of singular and nearly singular integrals. Computing 53(2), 173–194 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Steinbach, O.: Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer, Berlin (2008)

    Book  Google Scholar 

  24. Von Petersdorff, T.: Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11(2), 185–213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, M., Engström, C., Schmidt, K., Hafner, C.: On high-order FEM applied to canonical scattering problems in plasmonics. J. Comput. Theor. Nanosci. 8, 1–9 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. Schmidt for assistance with Concepts [25], and A. Schädle for providing the implementation of the eigenproblem solver in NGSolve [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Spindler.

Additional information

Communicated by Ulrich Langer.

The work of E. Spindler was partially supported by SNF under grant 20021_137873/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claeys, X., Hiptmair, R. & Spindler, E. A second-kind Galerkin boundary element method for scattering at composite objects. Bit Numer Math 55, 33–57 (2015). https://doi.org/10.1007/s10543-014-0496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0496-y

Keywords

Mathematics Subject Classification (2010)

Navigation