Skip to main content
Log in

Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Capillary electrokinetic chromatography is generally recognized as a versatile and robust capillary electromigration technique for the separation of enantiomers. In this mode, one or more chiral selectors are added to the background electrolyte acting as pseudostationary phases. Within the various chiral selectors that have been applied to enantioseparations in capillary electrokinetic chromatography, cyclodextrins are by far the most often used selectors because of their versatility, structural variety and commercial availability. This is reflected in the large number of applications of cyclodextrins to analytical enantioseparations that have been reported between January 2012 and July 2016, the period of time covered by this review. Many of these applications cover aspects of life sciences such as drug analysis, bioanalysis or food analysis. Despite the large number of commercially available cyclodextrins, new derivatives have been developed in order to achieve altered enantioselectivities or to further broaden the application range. Cyclodextrins have also been used to demonstrate the validity of theoretical models of electromigration as well as complex formation equilibria in enantioseparations. Finally, recent studies for an understanding of the molecular basis of the chiral recognition between cyclodextrins and the analytes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from Ref. [43], ©Elsevier 2015

Fig. 2

Adapted with permission from Ref. [71], ©John Wiley & Sons 2013

Fig. 3

Adapted with permission from Ref. [95], ©Elsevier 2015

Fig. 4

Preprinted with permission of Wiley from Ref. [166], ©Wiley 2014

Fig. 5

Reprinted with permission of Elsevier from Ref. [181], ©Esevier 2015

Fig. 6

Reprinted with permission of Wiley from Ref. [190], ©Wiley

Similar content being viewed by others

Abbreviations

A-β-CD:

6-Monodeoxy-6-monoamino-β-CD

AQbD:

Analytical quality by design

CHES:

2-(N-Cyclohexyl)amino-ethanesulfonic acid

CM-α-CD:

Carboxymethyl-α-CD

CM-β-CD:

Carboxymethyl-β-CD

CM-γ-CD:

Carboxymethyl-γ-CD

CSF:

Cerebrospinal fluid

DM-β-CD:

Heptakis(2,6-di-O-methyl)-β-CD

DMCM-γ-CD:

Octakis(2,3-O-dimethyl-6-O-carboxymethyl-γ-CD

EMO:

Enantiomer migration order

FITC:

Fluorescein isothiocyanate

Glu-β-CD:

Heptakis(2,6-di-O-[3-(1,3-dicarboxylpropylamino)-2-hydroxypropyl])-β-CD

HDAS-β-CD:

Heptakis-(2,3-diacetyl-6-sulfo)-β-CD

HDMS-β-CD:

Heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD

HETz-MPrAM-β-CD:

6A-4-Hydroxyethyl-1,2,3-triazolyl-6C-3-methoxypropylamino-β-CD

HP-β-CD:

Hydroxypropyl-β-CD

HP-γ-CD:

Hydroxypropyl-γ-CD

HPTMA-β-CD:

6-O-(2-Hydroxypropyltrimethylammonium)-β-CD

HS-β-CD:

Highly sulfated-β-CD

HS-γ-CD:

Highly sulfated-γ-CD

LLE:

Liquid–liquid extraction

M-β-CD:

Methyl-β-CD

M-γ-CD:

Methyl-γ-CD

MPrIM-β-CD:

Mono-6A-deoxy-6A-[3-(3-methoxypropyl)imidazol-1-ium]-β-CD

NBD-F:

7-Fluoro-4-nitro-2,1,3-benzoxadiazole

NOESY:

Nuclear Overhauser enhancement spectroscopy

P-γ-CD:

Phosphated γ-CD

PA-β-CD:

6-Monodeoxy-6-mono(3-hydroxy)-propylamino-β-CD

PIP-β-CD:

Mono-6-deoxy-6-piperdine-β-CD

PrIM-β-CD:

Mono-6A-deoxy-6A-(3-propylimidazol-1-ium)-β-CD

QA-β-CD:

Quaternary ammonium β-CD

ROESY:

Rotating frame Overhauser enhancement spectroscopy

SBE-β-CD:

Sulfobutyl ether β-CD

SBE-γ-CD:

Sulfobutyl ether γ-CD

SDBS:

Sodium dodecylbenzene sulfonate

SET-β-CD:

Mono(6-deoxy-6-sulfoethylthio)-β-CD

SMHT-β-CD:

Mono[6-deoxy-6-(6-sulfooxy-5,5-bis-sulfooxymethyl)hexylthio]-β-CD

TM-α-CD:

Hexakis(2,3,6-tri-O-methyl)-α-CD

TM-β-CD:

Heptakis(2,3,6-tri-O-methyl)-β-CD

TM-γ-CD:

Octakis(2,3,6-tri-O-methyl)-γ-CD

VACE:

Vacancy affinity capillary electrophoresis

References

  1. Bilensoy E (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Wiley, Hoboken

    Book  Google Scholar 

  2. Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley, Weinheim

    Book  Google Scholar 

  3. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617. doi:10.1007/s00253-002-1057-x

    Article  CAS  Google Scholar 

  4. Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37:2593–2608. doi:10.1039/b808881k

    Article  CAS  Google Scholar 

  5. Shen J, Ikai T, Okamoto Y (2014) Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J Chromatogr A 1363:51–61. doi:10.1016/j.chroma.2014.06.042

    Article  CAS  Google Scholar 

  6. Zhang X, Zhang Y, Armstrong DW (2012) Chromatographic separations and analysis: cyclodextrin-mediated HPLC, GC and CE enantiomeric separations. In: Carreira EM, Yamamoto H (eds) Comprehensive chirality, vol 8. Elsevier, Amsterdam, pp 177–199. doi:10.1016/B978-0-08-095167-6.00823-5

    Chapter  Google Scholar 

  7. Xiao Y, Ng SC, Tan TT, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68. doi:10.1016/j.chroma.2012.08.049

    Article  CAS  Google Scholar 

  8. Fanali S (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 875:89–122. doi:10.1016/S0021-9673(99)01309-6

    Article  CAS  Google Scholar 

  9. Juvancz Z, Bodane Kendrovics R, Ivanyi R, Szente L (2008) The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 29:1701–1712

    Article  CAS  Google Scholar 

  10. Scriba GKE (2008) Cyclodextrins in capillary electrophoresis enantioseparations—recent developments and applications. J Sep Sci 31:1991–2011. doi:10.1002/jssc.200800095

    Article  CAS  Google Scholar 

  11. Fanali S (2009) Chiral separations by CE employing CDs. Electrophoresis 30:S203–S210. doi:10.1002/elps.200900056

    Article  Google Scholar 

  12. Chankvetadze B (2009) Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 30:S211–S221. doi:10.1002/elps.200900102

    Article  Google Scholar 

  13. Cucinotta V, Contino A, Guiffrida A, Maccarrone G, Messina M (2010) Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A 1217:953–967. doi:10.1016/j.chroma.2009.11.094

    Article  CAS  Google Scholar 

  14. Rezanka P, Navratilova K, Rezanka M, Kral V, Sykora D (2014) Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35:2701–2721. doi:10.1002/elps.201400145

    Article  CAS  Google Scholar 

  15. Escuder-Gilabert L, Martin-Biosca Y, Medina-Hernandez JM, Sagrado S (2014) Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 1357:2–23. doi:10.1016/j.chroma.2014.05.074

    Article  CAS  Google Scholar 

  16. Zhou J, Tang J, Tang W (2015) Recent development of cationic cyclodextrins for chiral separation. Trends Anal Chem 65:22–29. doi:10.1016/j.trac.2014.10.009

    Article  CAS  Google Scholar 

  17. Tsioupi DA, Stefan-van Staden RI, Kapnissi-Christodoulou CP (2013) Chiral selectors in CE: recent developments and applications. Electrophoresis 34:178–204. doi:10.1002/elps.201200239

    Article  CAS  Google Scholar 

  18. Stavrou IJ, Mavroudi MC, Kapnissi-Christodoulou CP (2015) Chiral selectors in CE: recent developments and applications (2012-mid 2014). Electrophoresis 36:101–123. doi:10.1002/elps.201400310

    Article  CAS  Google Scholar 

  19. Jac P, Scriba GKE (2013) Recent advances in electrodriven enantioseparations. J Sep Sci 36:52–74. doi:10.1002/jssc.201200836

    Article  CAS  Google Scholar 

  20. Sanchez-Hernandez L, Castro-Puyana M, Marina ML, Crego AL (2012) Recent approaches in sensitive enantioseparations by CE. Electrophoresis 33:228–242. doi:10.1002/elps.201100404

    Article  CAS  Google Scholar 

  21. Sanchez-Hernandez L, Guijarro-Dioez M, Marina ML, Crego AL (2014) New approaches in sensitive chiral CE. Electrophoresis 35:12–27. doi:10.1002/elps.201300355

    Article  CAS  Google Scholar 

  22. Gübitz G, Schmid MG (2008) Chiral separation by capillary electromigration techniques. J Chromatogr A 1204:140–156. doi:10.1016/j.chroma.2008.07.071

    Article  CAS  Google Scholar 

  23. Preinerstorfer B, Lämmerhofer M, Lindner W (2009) Advances in enantioselective separations using electromigration capillary techniques. Electrophoresis 30:100–132. doi:10.1002/elps.200800607

    Article  CAS  Google Scholar 

  24. Scriba GKE (2011) Fundamental aspects of chiral electromigration techniques and application in pharmaceutical analysis. J Pharm Biomed Anal 55:688–701. doi:10.1016/j.jpba.2010.11.018

    Article  CAS  Google Scholar 

  25. Chankvetadze B (2007) Enantioseparations by using capillary electrophoretic techniques. The story of 20 and a few more years. J Chromatogr A 1168:45–70. doi:10.1016/j.chroma.2007.08.008

    Article  CAS  Google Scholar 

  26. Lin CE, Huang HC, Chen HW (2001) A capillary electrophoresis study on the influence of β-cyclodextrin on the critical micelle concentration of sodium dodecyl sulfate. J Chromatogr A 917:297–310. doi:10.1016/S0021-9673(01)00636-7

    Article  CAS  Google Scholar 

  27. Melani F, Giannini I, Pasquini B, Orlandini S, Pinzauti S, Furlanetto S (2011) Evaluation of the separation mechanism of electrokinetic chromatography with a microemulsion and cyclodextrins using NMR and molecular modeling. Electrophoresis 32:3062–3069. doi:10.1002/elps.201100263

    Article  CAS  Google Scholar 

  28. Riesova M, Svobodova J, Tosner Z, Benes M, Tesarova E, Gas B (2013) Complexation of buffer constitutents with neutral complexation agents: Part I. Impact on common buffer properties. Anal Chem 85:8518–8525

    Article  CAS  Google Scholar 

  29. Benes M, Riesova M, Svobodova J, Tesarova E, Dubsky P, Gas B (2013) Complexation of buffer constituents with neutral complexation agents: Part II. Practical impact in capillary zone electrophoresis. Anal Chem 85:8526–8534. doi:10.1021/ac401381d

    Article  CAS  Google Scholar 

  30. Wren SAC, Rowe RC (1992) Theoretical aspects of chiral separations by capillary electrophoresis. I. Initial evaluation of a model. J Chromatogr A 603:235–241. doi:10.1016/0021-9673(92)85366-2

    Article  CAS  Google Scholar 

  31. Stepanova ND, Stepanov AV (1969) Influence of temperature on the effectiveness of the electromigration separation of calcium and strontium in citric acid solutions. Zh Prikl Khimii 42:1670–1673

    CAS  Google Scholar 

  32. Guttman A, Paulus A, Cohen AS, Ginberg N, Karger BL (1988) Use of complexing agents for selective separation in high-performance capillary electrophoresis. Chiral resolution via cyclodextrins incorporated within polyacrylamide gel columns. J Chromatogr 448:41–53. doi:10.1016/S0021-9673(01)84564-7

    Article  CAS  Google Scholar 

  33. Chankvetadze B, Lindner W, Scriba GKE (2004) Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector: commentary on the feasibility of the concept. Anal Chem 76:4256–4260. doi:10.1021/ac0355202

    Article  CAS  Google Scholar 

  34. Rizzi AM, Kremser L (1999) pK a shift-associated effects in enantioseparations by cyclodextrin-mediated capillary zone electrophoresis. Electrophoresis 20:2715–2722. doi:10.1002/(SICI)1522-2683(19990901)20:13<2715:AID-ELPS2715>3.0.CO;2-E

    Article  CAS  Google Scholar 

  35. Hammitzsch-Wiedemann M, Scriba GKE (2009) Mathematical approach by a selectivity model for rationalization of pH- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis. Anal Chem 81:8765–8773. doi:10.1021/ac901160p

    Article  CAS  Google Scholar 

  36. Rizzi A (2001) Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 22:3079–3106. doi:10.1002/1522-2683(200109)22:15<3079:AID-ELPS3079>3.0.CO;2-F

    Article  CAS  Google Scholar 

  37. Müllerova L, Dubsky P, Gas B (2014) Twenty years of development of dual and multi-selector models in capillary electrophoresis: a review. Electrophoresis 35:2688–2700. doi:10.1002/elps.201400149

    Article  CAS  Google Scholar 

  38. Dubsky P, Dvorak M, Ansorge M (2016) Affinity capillary electrophoresis in the electrokinetic chromatography mode: the theory of electromigration. Anal Bioanal Chem. doi:10.1007/s00216-016-9799-y

    Google Scholar 

  39. Dubsky P, Müllerova L, Dvorak M, Gas B (2015) Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part I. Theory. J Chromatogr A 1384:142–146. doi:10.1016/j.chroma.2015.01.029

    Article  CAS  Google Scholar 

  40. Müllerova L, Dubsky P, Gas B (2015) Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part II. Application to dual systems and experimental verification. J Chromatogr A 1384:147–154. doi:10.1016/j.chroma.2015.01.055

    Article  CAS  Google Scholar 

  41. Asnin LD, Nikitana Y (2014) Effect of competing binding modes on retention in chromatography and electrophoresis. A theoretical consideration. J Sep Sci 37:390–392. doi:10.1002/jssc.201301074

    Article  CAS  Google Scholar 

  42. Müllerova L, Dubsky P, Gas B (2014) Separation efficiency of dual-selector systems in capillary electrophoresis. J Chromatogr A 1330:82–88. doi:10.1016/j.chroma.2014.01.006

    Article  CAS  Google Scholar 

  43. Müllerova L, Dubsky P, Ördögova M, Gas B (2015) Determination of relative enantiomer migration order using a racemic sample. J Chromatogr A 1424:139–143. doi:10.1016/j.chroma.2015.10.058

    Article  CAS  Google Scholar 

  44. Hruska V, Riesova M, Gas B (2012) A nonlinear electrophoretic model for PeakMaster: I. Mathematical model. Electrophoresis 33:923–930. doi:10.1002/elps.201100554

    Article  CAS  Google Scholar 

  45. Riesova M, Hruska V, Gas B (2012) A nonlinear electrophoretic model for PeakMaster: II. Experimental verification. Electrophoresis 33:931–937. doi:10.1002/elps.201100555

    Article  CAS  Google Scholar 

  46. Hruska V, Svobodova J, Benes M, Gas B (2012) A nonlinear electrophoretic model for PeakMaster: Part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. J Chromatogr A 1267:102–108. doi:10.1016/j.chroma.2012.06.086

    Article  CAS  Google Scholar 

  47. Benes M, Svobodova J, Hruska V, Dvorak M, Zuskova I, Gas B (2012) A nonlinear electrophoretic model for PeakMaster: Part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification. J Chromatogr A 1267:109–115. doi:10.1016/j.chroma.2012.06.053

    Article  CAS  Google Scholar 

  48. Hruska V, Benes M, Svobodova J, Zuskova I, Gas B (2012) Simulation of the effects of complex-formation equilibria in electrophoresis: I. Mathematical model. Electrophoresis 33:938–947. doi:10.1002/elps.201100529

    Article  CAS  Google Scholar 

  49. Svobodova J, Benes M, Hrusky V, Uselova K, Gas B (2012) Simulation of the effects of complex-formation equilibria in electrophoresis: II.Experimental verification. Electrophoresis 33:948–957. doi:10.1002/elps.201100503

    Article  CAS  Google Scholar 

  50. Svobodova J, Benes M, Dubsky P, Vigh G, Gas B (2012) Simulation of the effects of complex-formation equilibria in electrophoresis: III. Simultaneous effects of chiral selector concentration and background electrolyte pH. Electrophoresis 33:3012–3020. doi:10.1002/elps.201200293

    Article  CAS  Google Scholar 

  51. Thormann W, Chankvetadze L, Gumustas M, Chankvetadze B (2014) Dynamic computer simulation of electrophoretic enantiomer migration order and separation in presence of a neutral cyclodextrin. Electrophoresis 35:2833–2841. doi:10.1002/elps.201400193

    Article  CAS  Google Scholar 

  52. Thormann W, Caslavska J, Mosher RA (2015) Computer simulation of electrophoretic aspects of enantiomer migration and separation in capillary electrochromatography with a neutral selector. Electrophoreis 36:773–783. doi:10.1002/elps.201400457

    Article  CAS  Google Scholar 

  53. Dubsky P, Ordogova M, Maly M, Riesova M (2016) CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A 1445:158–165. doi:10.1016/j.chroma.2016.04.004

    Article  CAS  Google Scholar 

  54. Dvorak M, Svobodova J, Benes M, Gas B (2013) Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Electrophoresis 34:761–767. doi:10.1002/elps.201200581

    Article  CAS  Google Scholar 

  55. Benes M, Zuskova I, Svobodova J, Gas B (2012) Determination of stability constants of complexes of neutral analytes with charged cyclodextrins by affinity capillary electrophoresis. Electrophoresis 33:1032–1039. doi:10.1002/elps.201100489

    Article  CAS  Google Scholar 

  56. Riesova M, Svobodova J, Uselova K, Tosner Z, Zuskova I, Gas B (2014) Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization of optimization of separation conditions by Simul 5 Complex. J Chromatogr A 1364:276–288. doi:10.1016/j.chroma.2014.08.070

    Article  CAS  Google Scholar 

  57. Nowak P, Wozniakiewicz M, Koscielniak P (2015) Application of capillary electrophoresis in determination of acid dissociation constant values. J Chromatogr A 1377:1–12. doi:10.1016/j.chroma.2014.12.032

    Article  CAS  Google Scholar 

  58. Nowak P, Garnysz M, Mitoraj MP, Sagan F, Wozniakiewicz M, Koscielniak P (2015) Analytical aspects of achiral and cyclodextrin-mediated capillary electrophoresis of warfarin and its two main derivatives assisted by theoretical modeling. J Chromatogr A 1377:106–113. doi:10.1016/j.chroma.2014.12.030

    Article  CAS  Google Scholar 

  59. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977. doi:10.1002/anie.200802947

    Article  CAS  Google Scholar 

  60. Biedermann F, Nau WM, Schneider H-J (2014) The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as noncovalent driving force. Angew Chem Int Ed 53:11158–11171. doi:10.1002/anie.201310958

    Article  CAS  Google Scholar 

  61. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337–347. doi:10.1039/B111412N

    Article  CAS  Google Scholar 

  62. Dodziuk H, Kozinsky W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90–105. doi:10.1002/chir.10304

    Article  CAS  Google Scholar 

  63. Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 101:238–250. doi:10.1016/j.jpba.2014.02.022

    Article  CAS  Google Scholar 

  64. Mura P (2015) Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal 113:226–238. doi:10.1016/j.jpba.2015.01.058

    Article  CAS  Google Scholar 

  65. Elbashir AA (2012) Combined approach using capillary electrophoresis and molecular modeling for an understanding of enantioselective recognition mechanisms. J Appl Sol Chem Model 1:121–126. doi:10.1007/128_2013_439

    CAS  Google Scholar 

  66. Soares Nascimento Jr C, Fedoce Lopes J, Guimaraes L, Bastos Borges K (2014) Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector. Analyst 139:3901–3910. doi:10.1039/c4an00223g

    Article  Google Scholar 

  67. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099. doi:10.1021/ac0693823

    Article  Google Scholar 

  68. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856. doi:10.1016/j.chroma.2009.10.022

    Article  CAS  Google Scholar 

  69. Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838. doi:10.1007/s10337-012-2261-1

    Article  CAS  Google Scholar 

  70. Scriba GKE (2016) Chiral recognition in separation science—an update. J Chromatogr A. doi:10.1016/j.chroma.2016.05.061

    Google Scholar 

  71. Samakashvili S, Salgado A, Scriba GKE, Chankvetadze B (2013) Comparative enantioseparation of ketoprofen with trimethylated α-, β-, and γ-cyclodextrins in capillary electrophoresis and study of related selector-selectand interactions using nuclear magnetic resonance spectroscopy. Chirality 25:79–88. doi:10.1002/chir.22111

    Article  CAS  Google Scholar 

  72. Lomsadze K, Dominguez Vega E, Salgado A, Crego AL, Scriba GKE, Marina ML, Chankvetadze B (2012) Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE and NMR studies. Electrophoresis 33:1637–1647. doi:10.1002/elps.201200062

    Article  CAS  Google Scholar 

  73. Szabo ZI, Toth G, Völgyi G, Komjati B, Hancu G, Szente L, Sohajda T, Beni S, Muntean DL, Noszal B (2016) Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J Pharm Biomed Anal 117:398–404. doi:10.1016/j.jpba.2015.09.022

    Article  CAS  Google Scholar 

  74. Rezanka M, Rezanka P, Sykora D, Jindrich J, Kral V (2012) Impact of substituent position in monosubstituted α-cyclodextrins on enantioselectivity in capillary electrophoresis. J Sep Sci 35:811–815. doi:10.1002/jssc.201101034

    Article  CAS  Google Scholar 

  75. Navratilova K, Rezanka P, Rezanka M, Sykora D, Jindrich J, Kral V (2013) The study of enantioselectivity of all regioisomers of mono-carboxymethyl-β-cyclodextrin used as chiral selectors in CE. J Sep Sci 36:1270–1274. doi:10.1002/jssc.201400604

    Article  CAS  Google Scholar 

  76. Rezenka P, Rokosova L, Rezankova K, Blahova M, Rezanka M, Sykora D, Jindrich J, Kral V (2014) The influence of the substituent position in monocarboxymethyl-γ-cyclodextrins on enantioselectivity in capillary electrophoresis. J Sep Sci 37:2779–2784. doi:10.1002/jssc.201400604

    Article  CAS  Google Scholar 

  77. Rezanka P, Rezankova K, Sedlackova H, Masek J, Rokosova L, Blahova M, Rezanka M, Jindrich H, Sykofa D, Kral V (2016) Influence of subsitutent position and cavity size on the regioisomers of monocarboxymethyl-α-, β-, and γ-cyclodextrins on the apparent stability constants of their complexes with both enantiomers of Tröger´s base. J Sep Sci 39:980–985. doi:10.1002/jssc.201500845

    Article  CAS  Google Scholar 

  78. Servais AC, Rousseau A, Dive G, Frederich M, Crommen J, Fillet M (2012) Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivative and basic drug enantiomers in a methanolic background electrolyte. J Chromatogr A 1232:59–64. doi:10.1016/j.chroma.2011.10.010

    Article  CAS  Google Scholar 

  79. Chankvetadze L, Scervais AC, Fillet M, Salgado A, Crommen J, Chankvetadze B (2012) Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy. J Chromatogr A 1267:206–216. doi:10.1016/j.chroma.2012.08.063

    Article  CAS  Google Scholar 

  80. Melani F, Pasquini B, Caprini C, Gotti R, Orlandini S, Furlanetto S (2015) Combination of capillary electrophoresis, molecular modeling and NMR to study the enantioselective complexation of sulpiride with double cyclodextrin systems. J Pharm Biomed Anal 114:265–271. doi:10.1016/j.jpba.2015.05.031

    Article  CAS  Google Scholar 

  81. Zhang Y, Du S, Feng Z, Du Y, Yan Z (2016) Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis. Anal Bioanal Chem 408:2543–2555. doi:10.1007/s00216-016-9356-8

    Article  CAS  Google Scholar 

  82. Li L, Zhang Y, Li X, Shen S, Huang H, Bai Y, Liu H (2016) Study on the interaction of uranyl with sulfated beta-cyclodextrin by affinity capillary electrophoresis and molecular dynamics simulation. Electrophoresis. doi:10.1002/elps.201600074

    Google Scholar 

  83. Guo X, Wang Z, Zuo L, Zhou Z, Guo X, Sun T (2014) quantitative prediction of enantioseparation using β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst 139:6511–6519. doi:10.1039/c4an01265h

    Article  CAS  Google Scholar 

  84. Suliman FO, Elbashir AA (2012) Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: a molecular modeling approach. J Mol Struct 1019:43–49. doi:10.1016/j.molstruc.2012.03.055

    Article  CAS  Google Scholar 

  85. Sabela MI, Singh P, Gumede NJ, Bisetty K, Sagrado S (2012) Evaluation of enantioresolution of (±)-catechin using electrokinetic chromatography and molecular docking. J Sci Res Pharm 1:1–4. www.jsrponline.com/index.php?option=com_mtree&task=att_download&link_id=45&cf_id=24. Accessed 2 July 2016

  86. Yu J, Liang X, Wang Z, Guo X, Sun T, Guo X (2015) Separation of folinic acid diastereomers in capillary electrophoresis using a new cationic β-cyclodextrin derivative. PLoS One 10:e0120216. doi:10.1371/journal.pone.0120216

    Article  CAS  Google Scholar 

  87. Sohajda T, Szakacs Z, Szente L, Noszai B, Beni S (2012) Chiral recognition of imperanene enantiomers by various cyclodextrins: a capillary electrophoresis and NMR spectroscopy study. Electrophoresis 33:1458–1464. doi:10.1002/elps.201100560

    Article  CAS  Google Scholar 

  88. Li W, Tan G, Zhao L, Chen X, Zhang X, Zhu Z, Chai Y (2012) Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: chiral recognition mechanism and mathematical model for predicting chiral separation. Anal Chim Acta 718:138–147. doi:10.1016/j.aca.2012.01.007

    Article  CAS  Google Scholar 

  89. Wang Y, Zhou J, Liu Y, Tang J, Tang W (2014) Evaluation of the chiral separation ability of single-isomer cationic β-cyclodextrins in capillary electrophoresis. Electrophoresis 35:2744–2751. doi:10.1002/elps.201400198

    Article  CAS  Google Scholar 

  90. Zhou J, Ai F, Zhou B, Tang J, Ng SC, Tang W (2013) Hydroxyethylammonium monosubstituted cyclodextrin as chiral selector for capillary electrophoresis. Anal Chim Acta 800:95–102. doi:10.1016/j.aca.2013.09.021

    Article  CAS  Google Scholar 

  91. Suliman FO, Elbashir AA, Schmitz OJ (2015) Study on the separation of ofloxacin enantiomers by hydroxypropyl-β-cyclodextrin as a chiral selector in capillary electrophoresis: a computational approach. J Incl Phenom Macrocycl Chem 83:119–129. doi:10.1007/s10847-015-0547-2

    Article  CAS  Google Scholar 

  92. Toth G, Mohacsi R, Racz A, Rusu A, Horvath P, Szente L, Beni S, Noszal B (2013) Equilibrium and structural characterization of ofloxacin-cyclodextrin complexation. J Incl Phenom Macrocycl Chem 77:291–300. doi:10.1007/s10847-012-0245-2

    Article  CAS  Google Scholar 

  93. Zhang Y, Deng M, Yu J, Jiang Z, Guo X (2016) Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism. J Sep Sci 39:1766–1775. doi:10.1002/jssc.201501026

    Article  CAS  Google Scholar 

  94. Li L, Li X, Luo Q, You T (2015) A comprehensive study on the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches. Talanta 142:28–34. doi:10.1016/j.talanta.2015.04.039

    Article  CAS  Google Scholar 

  95. Zhou J, Wang Y, Liu Y, Tang J, Tang W (2015) Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis. Anal Chim Acta 868:73–79. doi:10.1016/j.aca.2015.02.013

    Article  CAS  Google Scholar 

  96. Wang S, Wang Y, Zhou J, Lu Y, Tang J, Tang W (2014) Mono-6A-(4-methoxybutylamino)-6A-β-cyclodextrin as a chiral selector for enantiomeric separation. J Sep Sci 37:2056–2061. doi:10.1002/jssc.201400248

    Article  CAS  Google Scholar 

  97. Zhou J, Dai Y, Wang S, Zhu E, Hai J, Liu Y, Tang J, Tang W (2012) Monosubstituted dually cationic cyclodextrins for stronger chiral recognition. RSC Adv 2:5088–5093. doi:10.1039/c2ra20086d

    Article  CAS  Google Scholar 

  98. Dai Y, Wang S, Zhou J, Liu Y, Sun D, Tang J, Tang W (2012) Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis. J Chromatogr A 1246:98–102. doi:10.1016/j.chroma.2012.02.065

    Article  CAS  Google Scholar 

  99. Danel C, Azarouai N, Chavaria C, Odou P, Martel B, Vaccer C (2013) Comparative study of the complex forming ability and enantioselectivity of cyclodextrin polymers by CE and 1H NMR. Carbohydr Polym 92:2282–2292. doi:10.1016/j.carbpol.2012.11.095

    Article  CAS  Google Scholar 

  100. Lee YJ, Choi S, Lee J, Nguyen NT, Lee K, Kang JS, Mar W, Kim KH (2012) Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy. Arch Pharm Res 35:671–681. doi:10.1007/s12272-012-0411-5

    Article  CAS  Google Scholar 

  101. Fejös I, Kazsoki A, Sohajda T, Marvanyos E, Volk B, Szente L, Beni S (2014) Interactions of non-charged tadalafil stereoisomers with cyclodextrins: capillary electrophoresis and nuclear magnetic resonance studies. J Chromatogr A 1363:348–355. doi:10.1016/j.chroma.2014.08-045

    Article  CAS  Google Scholar 

  102. Li W, Zhao L, Zhang H, Chen X, Chen S, Zhu Z, Hong Z, Chai Y (2014) Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms. Electrophoresis 35:2855–2862. doi:10.1002/elps.201300607

    Article  CAS  Google Scholar 

  103. Tarkanyi G, Memeth K, Mizsei R, Töke O, Visy J, Simonyi M, Jiczinszky L, Szeman J, Szente L (2013) Structure and stability of warfarin-sodium inclusion complex formed with permethylated monoamino-β-cyclodextrin. J Pharm Biomed Anal 72:292–298. doi:10.1016/j.jpba.2012.09.003

    Article  CAS  Google Scholar 

  104. Li W, Liu C, Tan G, Zhang X, Zhu Z, Chai Y (2012) Molecular modeling study of chiral separation and recognition mechanism of β-adrenergic antagonists by capillary electrophoresis. Int J Mol Sci 13:710–725. doi:10.3390/ijms13010710

    Article  CAS  Google Scholar 

  105. Tang J, Lu Y, Wang A, Zhou J, Tang W (2014) Novel methoxypropylimmidazolium β-cyclodextrin for improved enantioseparation of amino acids. Talanta 128:460–465. doi:10.1016/j.talanta.2014.06.006

    Article  CAS  Google Scholar 

  106. Zhou J, Liu Y, Lu Y, Tang J, Tang W (2014) Clicked AC regioisomer cationic cyclodextrins for enantioseparation. RSC Adv 4:54512–54516. doi:10.1039/C4RA06279E

    Article  CAS  Google Scholar 

  107. Dai Y, Wang S, Wu J, Tang J, Tang W (2012) Dicationic AC regioisomer cyclodextrins: mono-6A-ammonium-6C-alkylimidazolium-β-cyclodextrin chlorides as chiral selectors for enantioseparations. RSC Adv 2:12652–12656. doi:10.1039/c2a21940a

    Article  CAS  Google Scholar 

  108. Dai Y, Wang S, Zhou J, Tang J, Tang W (2013) A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: mono-6A-ammonium-6C-butylimidazolium-β-cyclodextrin chlorides. Electrophoresis 34:833–840. doi:10.1002/elps.201200473

    Article  CAS  Google Scholar 

  109. Yu J, Zhao J, Song J, Guo X (2014) Enantioseparation of meptazinol and its three intermediate enantiomers by capillary electrophoresis using a new cationic β-cyclodextrin derivative in single and dual cyclodextrin systems. Biomed Chromatogr 28:868–874. doi:10.1002/bmc.3187

    Article  CAS  Google Scholar 

  110. Popr M, Filippov SK, Matushkin N, Dian J, Jindrich J (2015) Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives—their stability, complexation ability in solution or shen deposited on solid anionic surface. Beilstein J Org Chem 11:192–199. doi:10.3762/bjoc.11.20

    Article  CAS  Google Scholar 

  111. Havlikova M, Bosakova Z, Benkovics G, Jindrich J, Popr M, Coufal P (2016) Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis. Chem Pap 70:1144–1154. doi:10.1515/chempap-2016-0053

    Article  CAS  Google Scholar 

  112. Yu J, Zuo L, Liu H, Zhang L, Guo X (2013) Synthesis and application of a chiral ionic liquid functionalized β-cyclodextrin as a chiral selector in capillary electrophoresis. Biomed Chromatogr 27:1027–1033. doi:10.1002/bmc.2900

    Article  CAS  Google Scholar 

  113. Boonleang J, Stobaugh JF (2013) New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Electrophoresis 34:1232–1240. doi:10.1002/elps.201200591

    Article  CAS  Google Scholar 

  114. Dubsky P, Svobodova J, Tesarova E, Gas B (2010) Enhanced selectivity in CZE multi chiral selector enantioseparation systems: proposed separation mechanism. Electrophoresis 31:1435–1441. doi:10.1002/elps.200900742

    CAS  Google Scholar 

  115. Benkovics G, Fejös I, Darcsi A, Varga E, Malnaga M, Fenyvesi E, Sohajda T, Szente L, Beni S, Szeman J (2016) Single-isomer carboxymethyl-γ-cyclodextrin as chiral resolving agent for capillary electrophoresis. J Chromatogr A. doi:10.1016/j.chroma.2016.06.083

    Google Scholar 

  116. Bao JJ, Jia F, Li Y, Liang Q, Wang Y (2016) Synthesis and applications of sulfopropyl ether γ-cyclodextrin polymer as chiral selector in capillary electrophoresis. Anal Bioanal Chem 408:3639–3649. doi:10.1007/s00216-016-9452-9

    Article  CAS  Google Scholar 

  117. McKee JA, Green TK (2015) Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis. Tetrahedron Lett 56:4451–4454. doi:10.1016/j.tetlet.2015.05.057

    Article  CAS  Google Scholar 

  118. Zhou J, Yao H, Shao H, Li Y, Zhang Z (2012) Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE. J Liq Chrom Relat Tech 35:50–58. doi:10.1080/10826076.2011.593387

    Article  CAS  Google Scholar 

  119. Rogez-Florent T, Foulon C, Six P, Goossens L, Danel C, Goossens J-F (2014) Optimization of the enantioseparation of a diaryl-pyrazole sulfonamide derivative by capillary electrophoresis in a dual CD mode using experimental design. Electrophoresis 35:2765–2771. doi:10.1002/elps.201300639

    Article  CAS  Google Scholar 

  120. Taschwer M, Hofer MG, Schmid MG (2014) Enantioseparation of benzofurys and other novel psychoactive compounds by CE and sulfobutylether β-cyclodextrin as chiral selector added to the BGE. Electrophoresis 35:2793–2799. doi:10.1002/elps.201400164

    Article  CAS  Google Scholar 

  121. Zhang Y, Yu H, Wu YJ, Zhao WY, Yang M, Jing HW, Chen AJ (2014) Combined use of [TBA][l-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis. Anal Biochem 462:13–18. doi:10.1016/j.ab.2014.06.008

    Article  CAS  Google Scholar 

  122. Wang Y, Zhang S, Breitbach Z, Petersen H, Ellegaard P, Armstrong DW (2016) Enantioseparation of citalopram analogues with sulfated β-cyclodextrin by capillary electrophoresis. Electrophoresis 37:841–848. doi:10.1002/elps.201500541

    Article  CAS  Google Scholar 

  123. Neumajer G, Sohajda T, Darcsi A, Tóth G, Szente L, Noszái B, Béni S (2012) Chiral recognition of dapoxetine enantiomers with methylated-gamma-cyclodextrin: a validated capillary electrophoresis method. J Pharm Biomed Anal 62:42–47. doi:10.1016/j.jpba.2011.12.032

    Article  CAS  Google Scholar 

  124. Szabó Z-I, Tóth C, Hancu G, Muntean D-L (2015) Simultaneous chiral separation of four H1 antihistamines by capillary zone electrophoresis using a dual cyclodextrin system. Chromatographia 78:1377–1384. doi:10.1007/s10337-015-2967-y

    Article  CAS  Google Scholar 

  125. Mavroudi MC, Kapnissi-Christodoulou CP (2015) Combined use of l-alanine tert butyl ester lactate and trimethyl-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs. Electrophoresis 36:2442–2450. doi:10.1002/elps.201500143

    Article  CAS  Google Scholar 

  126. Ibrahim WAW, Wahib SMA, Hermawan D, Sanagi MM, Aboul-Enein HY (2013) Separation of selected imidazole enantiomers using dual cyclodextrin system in micellar electrokinetic chromatography. Chirality 25:328–335. doi:10.1002/chir.22156

    Article  CAS  Google Scholar 

  127. Ibrahim WAW, Arsad SR, Maarof H, Sanagi MM, Aboul-Enein A (2015) Chiral separation of four stereoisomers of ketoconazole drugs using capillary electrophoresis. Chirality 27:223–227. doi:10.1002/chir.22416

    Article  CAS  Google Scholar 

  128. Bertaso A, Musile G, Gottardo R, Seri C, Tagliaro F (2015) Chiral analysis of methorphan in opiate-overdose related deaths by using capillary electrophoresis. J Chromatogr B 1000:130–135. doi:10.1016/j.jchromb.2015.07.024

    Article  CAS  Google Scholar 

  129. Guan J, Yan F, Shi S, Wang S (2012) Optimization and validation of a new CE method for the determination of pantoprazole enantiomers. Electrophoresis 33:1631–1636. doi:10.1002/elps.201100650

    Article  CAS  Google Scholar 

  130. Hancu G, Papp LA, Rusu A (2015) Chiral separation of the enantiomers of omeprazole and pantoprazole by capillary electrophoresis. Chromatographia 78:279–284. doi:10.1007/s10337-014-2827-1

    Article  CAS  Google Scholar 

  131. Szabó Z, Szőcs L, Muntean D, Noszál B, Tóth G (2016) Chiral separation of uncharged pomalidomide enantiomers using carboxymethyl-β-cyclodextrin: a validated capillary electrophoretic method. Chirality 28:199–203. doi:10.1002/chir.22563

    Article  CAS  Google Scholar 

  132. Baudelet D, Furman C, Ghinet A, Dezitter X, Adriouch S, Capet F, Rogez-Florent T, Gautret P, Rigo B, Millet R, Vaccher C, Lipka E (2015) Evaluation and comparison of three different separation techniques for analysis of retroamide enantiomers and their biological evaluation against h-P2X7 receptor. J Chromatogr B 986–987:35–43. doi:10.1016/j.jchromb.2015.02.001

    Article  CAS  Google Scholar 

  133. Lee Y-J, Choi S, Lee J, Nguyen NT, Lee K, Kang JS, Mar W, Kim KH (2012) Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy. Archives Pharm Res 35:671–681. doi:10.1007/s12272-012-0411-5

    Article  CAS  Google Scholar 

  134. Michalska K, Gruba E, Cielecka-Piontek J, Bednarek E (2016) Chiral separation of tedizolid using charge single isomer derivatives of cyclodextrins by capillary electrokinetic chromatography. J Pharm Biomed Anal 120:402–412. doi:10.1016/j.jpba.2015.11.022

    Article  CAS  Google Scholar 

  135. Cui S, Liu J, Hu X, Li J (2015) Enantioseparation of terbutaline by online concentration capillary electrophoresis coupling with partial filling technique. J Anal Chem 70:81–86. doi:10.1134/S1061934815010165

    Article  CAS  Google Scholar 

  136. Řezanka P, Sýkora D, Novotný M, Havlík M, Král V (2013) Nonaqueous capillary electrophoretic enantioseparation of water insoluble Troger’s Base derivatives using beta-cyclodextrin as chiral selector. Chirality 25:810–813. doi:10.1002/chir.22220

    Article  CAS  Google Scholar 

  137. Ibrahim WAW, Wahib SMA, Hermawan D, Sanagi MM, Aboul-Enein HY (2012) Chiral separation of vinpocetine using cyclodextrin-modified micellar electrokinetic chromatography. Chirality 24:252–254. doi:10.1002/chir.21990

    Article  CAS  Google Scholar 

  138. Nowak P, Garnysz M, Woźniakiewicz M, Kościelniak P (2014) Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis. J Sep Sci 37:2625–2631. doi:10.1002/jssc.201400514

    Article  CAS  Google Scholar 

  139. El Deeb S, Wätzig H, El-Hady D, Albishri MH, Sänger-von de Griend C, Scriba GKE (2014) Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis. Electrophoresis 35:170–189. doi:10.1002/elps.201300411

    Article  CAS  Google Scholar 

  140. EI Deeb S, Wätzig H, El-Hady AD, Sänger-von de Griend C, Scriba GKE (2016) Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013–2015). Electrophoresis 37:1591–1608. doi:10.1002/elps201600058

    Article  Google Scholar 

  141. Hendrickx A, Mangelings D, Vander Heyden Y (2011) Capillary methods for drug analysis. J AOAC Int 94:667–702

    CAS  Google Scholar 

  142. Altria KD, Barker NG, Hayworth M, Henderseon AD (2011) Use of a single capillary electrophoresis method as a routine identity test for batch release of a range of pharmaceutical products. Chromatographia 74:783–787. doi:10.1007/s10337-011-2149-5

    Article  CAS  Google Scholar 

  143. Aturki Z, Tocco A, Rocchi S, Fanali S (2014) Current applications of miniaturized chromatographic and electrophoretic techniques in drug analysis. J Pharm Biomed Anal 101:194–220. doi:10.1016/jpba.2014.03.041

    Article  CAS  Google Scholar 

  144. Suntornsuk L (2010) Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal Bioanal Chem 398:29–52. doi:10.1007/s00216-010-3741-5

    Article  CAS  Google Scholar 

  145. Ahuja S, Jimidar MI (eds) (2008) Capillary electrophoresis methods for pharmaceutical analysis, separation science and technology. Academic Press, London

    Google Scholar 

  146. Ali I, Sanagi MM, Aboul-Enein HY (2014) Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis. Electrophoresis 35:926–936. doi:10.1002/elps.201300222

    Article  CAS  Google Scholar 

  147. Dejaegher B, Mangelings D, Heyden YV (2012) Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview. Methods Mol Biol 970:409–427. doi:10.1007/978-1-62703-263-6_26

    Article  CAS  Google Scholar 

  148. Candioti LV, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–138. doi:10.1016/j.talanta.2014.01.034

    Article  CAS  Google Scholar 

  149. Orlandini S, Pinzauti S, Furlanetto S (2013) Application of quality by design to the development of analytical separation methods. Anal Bioanal Chem 405:443–450. doi:10.1007/s00216-012-6302-2

    Article  CAS  Google Scholar 

  150. Kapnissi-Christodoulou CP, Stavrou IJ, Mavroudi MC (2014) Chiral ionic liquids in chromatographic and electrophoretic separations. J Chromatogr A 1363:2–10. doi:10.1016/j.chroma.2014.05.059

    Article  CAS  Google Scholar 

  151. Tang S, Liu S, Guo Y, Liu X, Jiang S (2014) Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. J Chromatogr A 1357:147–157. doi:10.1016/j.chroma.2014.04.037

    Article  CAS  Google Scholar 

  152. Mu X, Qi L, Qiao J, Yang X, Ma H (2014) Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-L-hydroxyproline complexes coordinating with γ-cyclodextrins. Anal Chim Acta 846:68–74. doi:10.1016/j.aca.2014.07.022

    CAS  Google Scholar 

  153. Fu Q, Yang F, Chen H, Xia Z (2014) Enhancement of enantioselectivity in chiral capillary electrophoresis using hydroxypropyl-beta-cyclodextrin as chiral selector under molecular crowding conditions induced by dextran or dextrin. Electrophoresis 35:2938–2945. doi:10.1002/elps.201400116

    Article  CAS  Google Scholar 

  154. Na YC, Berthod A, Armstrong DW (2015) Cation-enhanced capillary electrophoresis separation of atropoisomer anions. Electrophoresis 36:2859–2865. doi:10.1002/elps.201500292

    Article  CAS  Google Scholar 

  155. Šolínová V, Kaiser MM, Lukáč M, Janeba Z, Kašička V (2014) Enantiopurity analysis of new types of acyclic nucleoside phosphonates by capillary electrophoresis with cyclodextrins as chiral selectors. J Sep Sci 37:295–303. doi:10.1002/jssc.201301092

    Article  CAS  Google Scholar 

  156. Lipka E, Landagaray E, Ettaoussi M, Yous S, Vaccher C (2014) Enhanced detection for determination of enantiomeric purity of novel agomelatine analogs by EKC using single and dual cyclodextrin systems. Electrophoresis 35:2785–2792. doi:10.1002/elps.201400106

    Article  CAS  Google Scholar 

  157. Fejős I, Urbancsok Z, Zhou W, Sohajda T, Hu W, Szente L, Béni S (2014) Separation of alogliptin enantiomers in cyclodextrin-modified capillary electrophoresis: a validated method. Electrophoresis 35:2885–2891. doi:10.1002/elps.201300515

    Article  CAS  Google Scholar 

  158. Krait S, Douša M, Scriba GKE (2016) Quality by design–guided development of a capillary electrophoresis method for the chiral purity determination of ambrisentan. Chromatographia. doi:10.1007/s10337-016-3137-6

    Google Scholar 

  159. Orlandini S, Pasquini B, Caprini C, Del Bubba M, Douša M, Pinzauti S, Furlanetto S (2016) Enantioseparation and impurity determination of ambrisentan using cyclodextrin-modified micellar electrokinetic chromatography: Visualizing the design space within quality by design framework. J Chromatogr A. doi:10.1016/j.chroma.2016.06.082

    Google Scholar 

  160. Deng X, De Wolf J, Vervoort R, Pamperin D, Adams E, Van Schepdael A (2012) Development and validation of a capillary electrophoresis method for the determination of escitalopram and sensitive quantification of its enantiomeric impurity in formulations. Electrophoresis 33:1648–1651. doi:10.1002/elps.201100580

    Article  CAS  Google Scholar 

  161. Deng X, Yuan Y, Adams E, Van Schepdael A (2013) Development and validation of a sensitive enantiomeric separation method for new single enantiomer drug levornidazole by CD-capillary electrophoresis. Talanta 106:186–191. doi:10.1016/j.talanta.2012.12.007

    Article  CAS  Google Scholar 

  162. Orlandini S, Pasquini B, Del Bubba M, Pinzauti S, Furlanetto S (2015) determination of enantiomeric impurities: development of a capillary electrophoresis method based on dual cyclodextrin systems for the analysis of levosulpiride. J Chromatogr A 1380:177–185. doi:10.1016/j.chroma.2014.12.065

    Article  CAS  Google Scholar 

  163. Wahl O, Holzgrabe U (2015) Evaluation of enantiomeric purity of magnesium-l-aspartate dehydrate. J Pharm Biomed Anal 102:100–109. doi:10.1016/j.jpba.2014.08.013

    Article  CAS  Google Scholar 

  164. Dahab AA, Smith NW (2012) Determination of trace amount of enantiomeric impurity in therapeutic nicotine derivative using capillary electrophoresis with new imaging technology detection. J Sep Sci 35:66–72. doi:10.1002/jssc.201100513

    Article  CAS  Google Scholar 

  165. Song L, Guo Z, Chen Y (2012) Separation and determination of chiral composition in penicillamine tablets by capillary electrophoresis in a broad pH range. Electrophoresis 33:2056–2063. doi:10.1002/elps.201200046

    Article  CAS  Google Scholar 

  166. Zuo L, Zhao Y, Ji F, Zhao M, Jiang Z, Sun T, Guo X (2014) Determination of the enantiomeric and diastereomeric impurities of RS-glycopyrrolate by capillary electrophoresis using sulfated-β-cyclodextrin as chiral selectors. Electrophoresis 35:3339–3344. doi:10.1002/elps.201400170

    Article  CAS  Google Scholar 

  167. Guan J, Li H, Yan F, Shi S, Wang S (2014) Optimization and validation of a novel CE method for the enantioseparation of pantoprazole and related benzimididazole using a dual chiral selector system. Electrophoresis 35:2800–2806. doi:10.1002/elps.201400305

    Article  CAS  Google Scholar 

  168. Sánchez-López E, Montealegre C, Marina ML, Crego AL (2014) Development of chiral methodologies by capillary electrophoresis with ultraviolet and mass spectrometry detection for duloxetine analysis in pharmaceutical formulations. J Chromatogr A 1363:356–362. doi:10.1016/j.chroma.2014.07.038

    Article  CAS  Google Scholar 

  169. Qi Y, Zhang X (2014) Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-cyclodextrin. Cell Biochem Biophys 70:1633–1637. doi:10.1007/s12013-014-0106-2

    Article  CAS  Google Scholar 

  170. Znaleziona J, Fejös I, Sevcik J, Dousa M, Beni S, Maier V (2015) Enantiomeric separation of tapentadol by capillary electrophoresis—study of chiral selectivity manipulation by various types of cyclodextrins. J Pharm Biomed Anal 105:10–16. doi:10.1016/j.jpba.2014.11.027

    Article  CAS  Google Scholar 

  171. Lehnert P, Přibylka A, Maier V, Znaleziona J, Ševčík J, Douša M (2013) Enantiomeric separation of R,S-tolterodine and R,S-methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis. J Sep Sci 36:1561–1567. doi:10.1002/jssc.201200530

    Article  CAS  Google Scholar 

  172. Li Z, Xue J, Guo X, He Q (2015) Chiral separation of valsartan by CZE. J Chem Pharm Res 7(3):118–121

    CAS  Google Scholar 

  173. Lee KR, Niguyen NT, Lee YJ, Choi S, Kang JS, Mar W, Kim KH (2015) Determination of the R-enantiomer of valsartan in pharmaceutical formulation by capillary electrophoresis. Arch Pharm Res 38:826–833. doi:10.1007/s12272-014-0449-7

    Article  CAS  Google Scholar 

  174. Kazsoki A, Fejős I, Sohajda T, Zhou W, Hu W, Szente L, Béni S (2016) Development and validation of a cyclodextrin-modified capillary electrophoresis method for the enantiomeric separation of vildagliptin enantiomers. Electrophoresis 37:1318–1325. doi:10.1002/elps.201500442

    Article  CAS  Google Scholar 

  175. Németh K, Palkó R, Kovács P, Visy J (2014) Development of novel chiral capillary electrophoresis methods for the serotonin receptor (5-HT2A) antagonist MDL 100,907 (volinanserin) and for its key intermediate compound. J Pharm Biomed Anal 88:579–583. doi:10.1016/j.jpba.2013.10.017

    Article  CAS  Google Scholar 

  176. Tonon MA, Bonato PS (2012) Capillary electrophoretic enantioselective determination of zopiclone and its impurities. Electrophoresis 33:1606–1612. doi:10.1002/elps.201100583

    Article  CAS  Google Scholar 

  177. Štĕpánová S, Kašička V (2014) Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods. J Sep Sci 37:2039–2055. doi:10.1002/jssc.201400266

    Article  CAS  Google Scholar 

  178. Zuo L, Meng H, Wu J, Jiang Z, Xu S, Guo X (2013) Combined use of ionic liquid and -CD for enantioseparation of 12 pharmaceuticals using CE. J Sep Sci 36:517–523. doi:10.1002/jssc.201200824

    Article  CAS  Google Scholar 

  179. Varga E, Sohajda T, Juvancz Z, Bodane Kendrovics R, Szekey E, Bansaghi G (2015) Development of electrophoretic methods for simultaneous determination of enantiomeric ratio and composition of diastereomeric salt mixtures. Chromatographia 78:881–888. doi:10.1007/s10337-015-2923-x

    Article  CAS  Google Scholar 

  180. Zhang Y, Wang J, Okamoto Y, Tokeshi M, Kaji N, Baba Y (2009) Velocity gap theory developed for magnifying resolutions without changing separation mechanisms or separation lengths. Anan Chem 81:2745–2750. doi:10.1021/ac802671m

    Article  CAS  Google Scholar 

  181. Xiao H, Fu X, Liang S, Li Y, Bao JJ, Zhang Y (2015) An approach to the determination of the enantiomeric excess at the extreme case by capillary electrophoresis. J Chromatogr A 1408:250–254. doi:10.1016/j.chroma.2015.07.006

    Article  CAS  Google Scholar 

  182. Sánchez-López E, Marina ML, Crego A (2016) Improving the sensitivity in chiral capillary electrophoresis. Electrophoresis 37:19–34. doi:10.1002/elps.201500315

    Article  CAS  Google Scholar 

  183. Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Ceyon AS, Gstoettenmayr D, Prapatpong P, Slhusban AA, Ranjbar L, See HH, Dasod M, Quirino JP (2015) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis 36:36–61. doi:10.1002/elps.201400420

    Article  CAS  Google Scholar 

  184. Mala Z, Slampva A, Krivankova L, Gebauer P, Bocek P (2015) Contemporary sample stacking in analytical electrophoresis. Electrophoresis 36:15–35. doi:10.1002/elps.201400313

    Article  CAS  Google Scholar 

  185. Kitagawa F, Otsuka K (2014) Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J Chromatogr A 1335:43–60. doi:10.1016/j.chroma.2013.10.066

    Article  CAS  Google Scholar 

  186. Awad H, Ei-Aneed A (2013) Enantioselectivity of mass spectrometry: challenges and promises. Mass Spectrom Rev 32:466–483. doi:10.1002/mas.21379

    CAS  Google Scholar 

  187. Kleparnik K (2015) Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis 36:159–178. doi:10.1002/elps.201400392

    Article  CAS  Google Scholar 

  188. Ota N, Rubakhin SS, Sweedler JV (2014) d-Alanine in the islets of Langerhans of rat pancreas. Biochem Bioph Res Commun 447:328–333. doi:10.1016/j.bbrc.2014.03.153

    Article  CAS  Google Scholar 

  189. Wagner Z, Tábi T, Jakó T, Zachar G, Csillag A, Szökő (2012) Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 404:2363–2368. doi:10.1007/s00216-012-6384-x

    Article  CAS  Google Scholar 

  190. Jakó T, Szabó E, Tábi T, Zachar G, Csillag A, Szökő É (2014) Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 35:2870–2876. doi:10.1002/elps.201400224

    Article  CAS  Google Scholar 

  191. Romero GE, Lockridge AD, Morgans CW, Bandyopadhyay D, Miller RF (2014) The postnatal development of d-serine in the retinas of two mouse strains, including a mutant mouse with a deficiency in d-amino acid oxidase and a serine racemase knockout mouse. ACS Chem Neurosci 5:848–854. doi:10.1152/jn.00310.2013

    Article  CAS  Google Scholar 

  192. Lorenzo MP, Villaseñor A, Ramamoorthy A, Garcia A (2013) Optimization and validation of a capillary electrophoresis laser-induced fluorescence method for amino acids determination in human plasma: application to bipolar disorder study. Electrophoresis 34:1701–1709. doi:10.1002/elps.201200632

    Article  CAS  Google Scholar 

  193. Mantim T, Nacapricha D, Wilairat Hauser PC (2012) Enantiomeric separation of some common controlled stimulants by capillary electrophoresis with contactless conductivity detection. Electrophoresis 33:388–394. doi:10.1002/elps.201100370

    Article  CAS  Google Scholar 

  194. Theurillat R, Larenza MP, Feige K, Bettschart-Wolfensberger R, Thormann W (2014) Development of a method for analysis of ketamine and norketamine enantiomers in equine brain and cerebrospinal fluid by capillary electrophoresis. Electrophoresis 35:2863–2869. doi:10.1002/elps.201400093

    Article  CAS  Google Scholar 

  195. Wen J, Zhang WT, Cao WQ, Li J, Gao FY, Yang N, Fan GR (2014) Enantioselective separation of mirtazapine and its metabolites by capillary electrophoresis with acetonitrile field-amplified sample stacking and its application. Molecules 19(4):4907–4923. doi:10.3390/molecules19044907

    Article  CAS  Google Scholar 

  196. Yu PL, Tu YY, Hsieh M-M (2015) Combination of poly(diallyldimethylammonium chloride) and hydroxypropyl-γ-cyclodextrin for high-speed enantioseparation of phenothiazines by capillary electrophoresis. Talanta 131:330–334. doi:10.1016/j.talanta.2014.08.015

    Article  CAS  Google Scholar 

  197. Piešťanský J, Maráková K, Kovaľ M, Havránek E, Mikuš P (2015) Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples. Electrophoresis 36:3069–3079. doi:10.1002/elps.201500351

    Article  CAS  Google Scholar 

  198. Tabani H, Fakhari AR, Shahsavani A, Alibabaou HG (2014) Electrically assisted liquid-phase microextraction combined with capillary electrophoresis for quantification of propranolol enantiomers in human body fluids. Chirality 26:260–267. doi:10.1002/chir.22308

    Article  CAS  Google Scholar 

  199. Fakhari AR, Tabani H, Nojavan S, Abedi H (2012) Electromembrane extraction combined with cyclodextrin-modified capillary electrophoresis for the quantification of trimipramine enantiomers. Electrophoresis 33:506–515. doi:10.1002/elps.201100426

    Article  CAS  Google Scholar 

  200. Lee SC, Wang CC, Yang PC, Wu SM (2012) Enantioseparation of (±)-threo-methylphenidate in human plasma by cyclodextrin-modified sample stacking capillary electrophoresis. J Chromatogr A 1232:302–305. doi:10.1016/j.chroma.2011.10.072

    Article  CAS  Google Scholar 

  201. Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A (2016) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 37:111–141. doi:10.1002/elps.201500291

    Article  CAS  Google Scholar 

  202. Garcia-Canas V, Simo C, Castro-Puyana M, Cifuentes A (2014) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 35:147–169. doi:10.1002/elps.201300315

    Article  CAS  Google Scholar 

  203. Tezcan F, Uzasci S, Guler U (2013) Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices. Food Chem 141:1187–1191. doi:10.1016/j.foodchem.2013.04.017

    Article  CAS  Google Scholar 

  204. Mirasoli M, Gotti R, Fusco MD, Leoni A, Colliva C, Roda A (2014) Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage. Talanta 129:32–38. doi:10.1016/j.talanta.2014.04.044

    Article  CAS  Google Scholar 

  205. Pasquini B, Orlandini S, Goodarzi M, Caprini C, Gotti R, Furlanetto S (2016) Chiral cyclodextrin-modified micellar electrokinetic chromatography and chemometric techniques for green tea samples origin discrimination. Talanta 150:7–13. doi:10.1016/j.talanta.2015.12.003

    Article  CAS  Google Scholar 

  206. Kodama S, Taga A, Aizawa S, Kemmei T, Honda Y, Suzuki K, Yamamoto A (2012) Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector. Electrophoresis 33:2441–2445. doi:10.1002/elps.201100531

    Article  CAS  Google Scholar 

  207. Perez-Fernandez V, Garcia MA, Marina ML (2011) Chiral separation of agricultural fungicides. J Chromatogr A 1218:6561–6582. doi:10.1016/j.chroma.2011.07.084

    Article  CAS  Google Scholar 

  208. Ali I, Gupta VK, Aboul-Enein HY (2008) Chiral resolution of racemic environmental pollutants by capillary electrophoresis. Crit Rev Anal Chem 38:132–146. doi:10.1080/10408340701804467

    Article  CAS  Google Scholar 

  209. Perez-Fernandez V, Garcia MA, Marina ML (2010) Characteristics and enantiomeric analysis of chiral pyrethroids. J Chromatogr A 1217:968–989. doi:10.1016/j.chroma.2009.10.069

    Article  CAS  Google Scholar 

  210. Rojyno-Delgado AM, Lugue de Castro MD (2014) Capillary electrophoresis and herbicide analysis: present and future perspectives. Electrophoresis 35:2509–2519. doi:10.1002/elps.201300556

    Article  CAS  Google Scholar 

  211. Asensi-Berbardi L, Martín-Biosca Y, Escuder-Gilabert L, Sagrado S, Medina-Hernández MJ (2015) Evaluation of the enantioselective binding of imazalil to human serum albumin by capillary electrophoresis. Biomed Chromatogr 29:1637–1642. doi:10.1002/bmc.3472

    Article  CAS  Google Scholar 

  212. Scriba GKE, Belal F (2015) Advances in capillary electrophoresis-based enzyme assays. Chromatographia 78:947–970. doi:10.1007/s10337-015-2912-0

    Article  CAS  Google Scholar 

  213. Wang X, Li K, Adams E, Van Schepdael A (2014) Recent advances in CE-mediated microanalysis for enzyme studies. Electrophoresis 35:119–127. doi:10.1002/elps.201300294

    Article  CAS  Google Scholar 

  214. Ramana P, Adams E, Augustijns P, Van Schepdael A (2016) Recent advances in CE-mediated microanalysis for enzymatic and derivatization reactions. Electrophoresis 37:56–65. doi:10.1002/elps.201500300

    Article  CAS  Google Scholar 

  215. Asensi-Bernardi L, Martín-Biosca Y, Escuder-Gilabert L, Sagrado S, Medina-Hernández MJ (2013) In-line capillary electrophoretic evaluation of the enantioselective metabolism of verapamil by cytochrome P3A4. J Chromatogr A 1298:139–145. doi:10.1016/j.chroma.2013.05.038

    Article  CAS  Google Scholar 

  216. Kwan HY, Thormann W (2012) Electrophoretically mediated microanalysis for characterization of the enantioselective CYP3A4 catalyzed N-demethylation of ketamine. Electrophoresis 33:3299–3305. doi:10.1002/elps.201200127

    Article  CAS  Google Scholar 

  217. Reminek R, Glatz Z, Thormann W (2015) Optimized on-line enantioselective capillary electrophoretic method for kinetic and inhibition studies of drug metabolism mediated by cytochrome P450 enzymes. Electrophoresis 36:1349–1357. doi:10.1002/elps.201400356

    Article  CAS  Google Scholar 

  218. Sandbaumhüter FA, Theurillat R, Thormann W (2015) Effect of medetomidine and its active enantiomer dexmedetomidine on N-demethylation of ketamine in canines determined in vitro using enantioselective capillary electrophoresis. Electrophoresis 36:2703–2712. doi:10.1002/elps201500147

    Article  CAS  Google Scholar 

  219. Zhu Q, El-Mergawy RG, Heinemann SH, Schönherr R, Jáč P, Scriba GKE (2013) Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase enzymes employing a multiple layer coated capillary. Electrophoresis 34:2712–2717. doi:10.1002/elps.201300147

    Article  CAS  Google Scholar 

  220. Zhu Q, El-Mergawy RG, Heinemann SH, Schönherr R, Jáč P, Scriba GKE (2014) Stereospecific electrophoretically mediated microanalysis assay for methionine sulfoxide reductase enzymes. Anal Bioanal Chem 406:1723–1729. doi:10.1007/s00216-013-7596-4

    Article  CAS  Google Scholar 

  221. Zhu Q, Huo X, Heinemann SH, Schönherr R, El-Mergawy RG, Scriba GKE (2014) Experimental design-guided development of a stereospecific capillary electrophoresis assay for methionine sulfoxide reductase enzymes using a diastereomeric pentapeptide substrate. J Chromatogr A 1359:224–229. doi:10.1016/j.chroma.2014.07.009

    Article  CAS  Google Scholar 

  222. Zhu Q, El-Mergawy RG, Zhou Y, Chen C, Heinemann SH, Schönherr R, Robaa D, Sippl W, Scriba GKE (2016) Stereospecific capillary electrophoresis assays using pentapeptide substrates for the study of Aspergillus nidulans methionine sulfoxide reductase A and mutant enzymes. Electrophoresis 37:2083–2090. doi:10.1002/elps.201600181

    Article  CAS  Google Scholar 

  223. Sun B, Miller G, Lee WY, Ho K, Crowe MA, Patridge L (2013) Analytical method development for directed enzyme evolution research: a high throughput high-performance liquid chromatography method for analysis of ribose and ribitol and a capillary electrophoresis method for the separation of ribose enantiomers. J Chromatogr A 1271:163–169. doi:10.1016/j.chroma.2012.11.042

    Article  CAS  Google Scholar 

  224. Singh NA, Paulo RK, Sichler M, Moaddel R, Bernier M, Wainer IW (2012) Capillary electrophoresis-laser-induced fluorescence (CE-LIF) assay for measurement of intracellular d-serine and serine racemase activity. Anal Biochem 421:460–466. doi:10.1016/j.ab2011.10.003

    Article  CAS  Google Scholar 

  225. Su Y, Mu X, Qi L (2014) A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors. RSC Adv 4:55280–55285. doi:10.1039/C4RA09433F

    Article  CAS  Google Scholar 

  226. Sun B, Qi L, Mu X, Qiao J, Wang M (2013) A chiral ligand exchange CD system for monitoring inhibitory effect of kojic acid on tyrosinase. Talanta 116:1121–1125. doi:10.1016/j.talanta.2013.08.028

    Article  CAS  Google Scholar 

  227. Su Y, Mu X, Qi L (2015) Development of a capillary electrophoresis system with Mn(II) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors. RSC Adv 5:28762–28768. doi:10.1039/C5RA02744F

    Article  CAS  Google Scholar 

  228. Mikuma T, Iwata YT, Miyaguchi H, Kuwayama K, Tsujikawa K, Kanamori T, Inoue H (2015) The use of a sulfonated capillary on chiral capillary electrophoresis/mass spectrometry of amphetamine-type stimulants for methamphetamine impurity profiling. Forensic Sci Int 249:59–65. doi:10.1016/j.forsciint.2015.01.015

    Article  CAS  Google Scholar 

  229. Fortes SS, Barth T, Furtado NAJC, Pupo MT, de Gaitani CM, de Oliveira ARM (2013) Evaluation of dispersive liquid–liquid microextraction in the stereoselective determination of cetirizine following the fungal biotransformation of hydroxyzine and analysis by capillary electrophoresis. Talanta 116:743–752. doi:10.1016/j.talanta.2013.07.062

    Article  CAS  Google Scholar 

  230. de Albuquerque NCP, de Gaitani CM, de Oliveira ARM (2015) A new and fast DLLME-CE method for the enantioselective analysis of zopiclone and its active metabolite after fungal biotransformation. J Pharm Biomed Anal 109:192–201. doi:10.1016/j.jpba.2015.02.039

    Article  CAS  Google Scholar 

  231. Bocato MZ, Bortoleto MA, Pupo MT, de Oliveira ARM (2014) A new enantioselective CE method for determination of oxcarbazepine and licarbazepine after fungal biotransformation. Electrophoresis 35:2877–2884. doi:10.1002/elps.201400137

    Article  CAS  Google Scholar 

  232. Asensi-Bernardi L, Martín-Biosca Y, Sagrado S, Medina-Hernández MJ (2012) Electrokinetic chromatographic estimation of the enantioselective binding of nomifensine to human serum albumin and total plasma proteins. Biomed Chromatogr 26:1357–1363. doi:10.1002/bmc.2704

    Article  CAS  Google Scholar 

  233. Solinova V, Mikyskova H, Kaiser MM, Janeba Z, Holy A, Kasicka V (2016) Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with b-cyclodextrin by affinity capillary electrophoresis. Electrophoresis 37:239–347. doi:10.1002/elps.201500337

    Article  CAS  Google Scholar 

  234. Aranyi A, Peter A, Ilisz I, Fueloep F, Scriba GKE (2014) Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis. Role of complexation constants and complex mobilities. Electrophoresis 35:2848–2854. doi:10.1002/elps.201400142

    Article  CAS  Google Scholar 

  235. Baudelet D, Ghinet A, Furmann C, Dezitter X, Gautret P, Rigo B, Millet R, Vaccer C, Lipka E (2014) Antagonists of the P2X7 receptor: mechanism of enantioselective recognition using highly sulfated and sulfobutylether cyclodextrins by capillary electrokinetic chromatography. Electrophoresis 35:2892–2899. doi:10.1002/elps.20140013

    Article  CAS  Google Scholar 

  236. Nagl S, Schulze P, Ohla S, Beyreiss R, Gitlin L, Belder D (2011) Microfluidic chips for chirality exploration. Anal Chem 83:3232–3238. doi:10.1021/ac200150w

    Article  CAS  Google Scholar 

  237. Kašička V (2014) Recent developments in capillary and microchip electroseparations of peptides (2011–2013). Electrophoresis 35:69–95. doi:10.1002/elps.201300331

    Article  CAS  Google Scholar 

  238. Cong H, Xu S, Yu B, Yuan H, Peng O, Tian C (2015) Recent progress in preparation and application of microfluidic chip electrophoresis. J Micromech Microeng 25:1–11. doi:10.1088/0960-1317/25/5/053001

    Article  CAS  Google Scholar 

  239. Kenyon SM, Meighan MM, Hayes MA (2011) Recent developments in electrophoretic separations on microfluidic devices. Electrophoresis 32:482–493. doi:10.1002/elps.201000469

    Article  CAS  Google Scholar 

  240. Guo W, Rong Z, Li Y, Fung Y, Gao G, Cai Z (2013) Microfluidic chip capillary electrophoresis coupled with electrochemiluminescence for enantioseparation of racemic drugs using central composite design optimization. Electrophoresis 34:2962–2969. doi:10.1002/elps.201300238

    CAS  Google Scholar 

  241. Li X, Xiao D, Ou X-M, McCullum C, Liu Y-M (2013) A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique. J Chromatogr A 1318:251–256. doi:10.1016/j.chroma.2013.10.020

    Article  CAS  Google Scholar 

  242. Li X, McCullum C, Zhao S, Hu H, Liu Y-M (2015) d-Serine uptake and release in PC-12 cells measured by chiral microchip electrophoresis-mass spectrometry. ACS Chem Neurosci 6:582–587. doi:10.1021/cn5003122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfu Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

G. K. E. Scriba and Q. Zhu contributed equally to this work.

For a list of CDs including the nature and positions of the substituents see also Table S1 (Supplementary Material).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Scriba, G.K.E. Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 79, 1403–1435 (2016). https://doi.org/10.1007/s10337-016-3167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3167-0

Keywords

Navigation