Skip to main content
Log in

High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The phenolic compounds present in hydrolysates pose significant challenges for the sustainable lignocellulosic materials refining industry. Three Saccharomyces cerevisiae strains with high tolerance to lignocellulose hydrolysate were obtained through ethyl methanesulfonate mutation and adaptive evolution. Among them, strain EMV-8 exhibits specific tolerance to vanillin, a phenolic compound common in lignocellulose hydrolysate. The EMV-8 maintains a specific growth rate of 0.104 h−1 in 2 g L−1 vanillin, whereas the reference strain cannot grow. Physiological studies revealed that the vanillin reduction rate of EMV-8 is 1.92-fold higher than its parent strain, and the Trolox equivalent antioxidant capacity of EMV-8 is 15 % higher than its parent strain. Transcriptional analysis results confirmed an up-regulated oxidoreductase activity and antioxidant activity in this strain. Our results suggest that enhancing the antioxidant capacity and oxidoreductase activity could be a strategy to engineer S. cerevisiae for improved vanillin tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2. doi:10.1186/1754-6834-3-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15(10):647–653. doi:10.1089/omi.2011.0003

    Article  PubMed  CAS  Google Scholar 

  3. Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1(1):3. doi:10.1186/1754-6834-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Endo A, Nakamura T, Shima J (2009) Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol Lett 299(1):95–99. doi:10.1111/j.1574-6968.2009.01733.x

    Article  PubMed  CAS  Google Scholar 

  5. Fitzgerald DJ, Stratford M, Narbad A (2003) Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol 86(1–2):113–122

    Article  PubMed  CAS  Google Scholar 

  6. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71(3):339–349. doi:10.1007/s00253-005-0142-3

    Article  PubMed  CAS  Google Scholar 

  7. Ji L, Shen Y, Xu L, Peng B, Xiao Y, Bao X (2011) Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol 102(17):8105–8109. doi:10.1016/j.biortech.2011.06.057

    Article  PubMed  CAS  Google Scholar 

  8. Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. doi:10.1186/1754-6834-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1915–1924. doi:10.1007/s00253-010-2518-2

    Article  PubMed  CAS  Google Scholar 

  10. Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73(1):27–36. doi:10.1007/s00253-006-0567-3

    Article  PubMed  CAS  Google Scholar 

  11. Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282(3):233–244. doi:10.1007/s00438-009-0461-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luo JG, Li L, Kong LY (2012) Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem 131(3):1056–1062

    Article  CAS  Google Scholar 

  13. Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomic 11:660. doi:10.1186/1471-2164-11-660

    Article  CAS  Google Scholar 

  14. Mira NP, Palma M, Guerreiro JF, Sa-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79. doi:10.1186/1475-2859-9-79

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456. doi:10.1128/MCB.02205-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25(3):169–177. doi:10.1002/yea.1576

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen TT, Iwaki A, Ohya Y, Izawa S (2013) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng. doi:10.1016/j.jbiosc.2013.06.008

    Google Scholar 

  18. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  19. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  20. Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102(10):6033–6038. doi:10.1016/j.biortech.2011.02.101

    Article  PubMed  CAS  Google Scholar 

  21. Pereira FB, Guimaraes PM, Gomes DG, Mira NP, Teixeira MC, Sa-Correia I, Domingues L (2011) Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels 4(1):57. doi:10.1186/1754-6834-4-57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96(4):1079–1091. doi:10.1007/s00253-012-4418-0

    Article  PubMed  CAS  Google Scholar 

  23. Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ (2012) Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16(7–8):374–386. doi:10.1089/omi.2011.0127

    Article  PubMed  CAS  Google Scholar 

  24. Zhang X, Shen Y, Shi W, Bao X (2010) Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol 101(18):7104–7110

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants of the National Basic Research Program of China (2011CB707405), the National High Technology Research and Development Program of China (2012AA022106), the National Natural Science Foundation of China (30970091), the State Key Laboratory of Motor Vehicle Biofuel Technology (No. 2013004), and the Independent Innovation Foundation of Shandong University (IIFSDU 2010TS059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Bao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 97 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, H., Wang, X. et al. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol 41, 1637–1645 (2014). https://doi.org/10.1007/s10295-014-1515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1515-3

Keywords

Navigation