Skip to main content

Advertisement

Log in

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one β-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and β-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams JJ, Pal G, Yam K, Spencer HL, Jia Z, Smith SP (2005) Purification and crystallization of a trimodular complex comprising the type II cohesin–dockerin interaction from the cellulosome of Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:46–48

    Article  CAS  PubMed  Google Scholar 

  2. Amon T, Amon B, Kryvoruchko V, Machmuller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Potsch E, Wagentristl H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  CAS  PubMed  Google Scholar 

  3. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  PubMed  Google Scholar 

  4. Arora DS, Sandhu DK (1986) Degradation of cellulosic residues by Polyporous versicolor and the effect of moisture contents and phenolic compounds. Acta Biotechnol 6:293–297

    Article  CAS  Google Scholar 

  5. Aylward JH, Gobius KS, Xue G-P, Simpson GD, Dalrymple BP (1999) The Neocallimastrix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activity on Avicel. Enzyme Microb Technol 24:609–614

    Article  CAS  Google Scholar 

  6. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58: 521–554

    Article  CAS  PubMed  Google Scholar 

  7. Bisaria VS, Ghose TK (1981) Biodegradation of cellulosic material: substrate, microorganism, enzyme and products. Enzyme Microbiol Technol 3:91–104

    Article  Google Scholar 

  8. Blackwell J (1992) Cellulose and other natural polymer system: biogenesis, structure and degradation. In: Martin AM (ed) Bioconversion of wastes material to industrial products. Blackie Acad Prof, London, SEI 8 HN, pp 197–246

  9. Bonatti M, Karnopp P, Soares HM, Furlan SA (2004) Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 88:425–428

    Article  CAS  Google Scholar 

  10. Bronnenmeier K, Staudenbauer WL (1988) Purification and properties of an extracellular β-glucosidase from the cellulolytic thermophilic Clostridium stercorarium. Appl Microbiol Biotechnol 28:380–386

    Article  CAS  Google Scholar 

  11. Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  Google Scholar 

  12. Caulfied DF, Moore WE (1974) Effect of varying crystallinity of cellulose on enzymatic hydrolysis. Wood Sci 6:375–379

    Google Scholar 

  13. Chaudhary LC, Singh R, Kamra DN (1994) Biodelignification of sugar cane bagasse by Pleurotus florida and Pleurotus cornucopiae. Indian J Microbiol 34:55–57

    Google Scholar 

  14. Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das K, Anis M, Mohd. Azemi BMN, Ismail N (1995) Fermentation and recovery of glutamic acid from palm waste hydrolysate by ion-exchange resin column. Biotechnol Bioeng 48:551–555

    Article  CAS  PubMed  Google Scholar 

  16. Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767

    Article  CAS  PubMed  Google Scholar 

  17. De Ruyck J, Allard G, Maniatis K (1996) An externally fired evaporative gas turbine cycle for small scale biomass CHP production. In: Chartier P et al (eds) Proceedings of the 9th European Bioenergy conference, Pergamon, Oxford

    Google Scholar 

  18. Demain AL, Newcomb M, David Wu JH (2005) Cellulase, clostridia, and ethanol microbiol. Mol Biol Rev 69:124–154

    Article  CAS  Google Scholar 

  19. Dequin S, Baptista E, Barre P (1999) Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am J Enol Vitic 50:45–50

    CAS  Google Scholar 

  20. Doppelbauer P, Esterbauer H, Steiner W, Lafferty RM, Steinmuller H (1987) The use of lignocellulosic wastes for production of cellulose by Trichoderma reesei. Appl Microbiol Biotechnol 26:485–494

    Article  CAS  Google Scholar 

  21. Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 84:141–152

    Article  PubMed  Google Scholar 

  22. Dunlap CE, Thomson J, Chiang LC (1976) Treatment processes to increase microbial digestibility. AICHE Symp Ser 72:58–63

    CAS  Google Scholar 

  23. Eberhart BM, Beek RS, Goolsby KM (1977) Cellulose of Neurospora crassa. J Microbiol 130:181–186

    CAS  Google Scholar 

  24. Fairweather JK, Faijes M, Driguez H, Planas A (2002) Specific studies of Bacillus 1,3–1–4-beta-glucanase and application to glycosynthase-catalyzed transglycosylation. Chembiochem 3:866–873

    Article  CAS  PubMed  Google Scholar 

  25. FAOSTAT (2006) FAO statistical databases. http://faostat.fao.org/

  26. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 113:506–508

    Article  CAS  Google Scholar 

  27. Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328

    Article  CAS  PubMed  Google Scholar 

  28. Garg SK, Neelkantan S (1982) Effect of nutritional factors on cellulose enzyme and microbial protein production by Aspergillus terrus and its evaluation. Biotechnol Bioeng 24:109–125

    Article  CAS  PubMed  Google Scholar 

  29. Goel HC, Ramachandran KB (1983) Studies on adsorption of cellulose of lignocellulosics. J Ferment Technol 3:281–286

    Google Scholar 

  30. Gunju RK, Vithayuthil PJ, Murthy SK (1990) Factors influencing production of cellulases by Chaetomium thermophile var. coprophile. Indian J Exp Biol 28:259–264

    Google Scholar 

  31. Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulose and β-glucosidase production by co-cultivation by Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169

    Article  CAS  Google Scholar 

  32. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11

    Article  CAS  PubMed  Google Scholar 

  33. Hartree MM, Yu EKC, Reid ID, Saddler JN (1987) Suitability of aspen wood biologically delignified with Pheblia tremellosus for fermentation of ethanol or butanol. Appl Microbiol Biotechnol 26:120–125

    Article  Google Scholar 

  34. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123

    Article  CAS  PubMed  Google Scholar 

  35. Hou Y, Wang T, Long H, Zhu H (2007) Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin 39:101–107

    Article  CAS  PubMed  Google Scholar 

  36. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production African. J Biotechnol 2:602–619

    CAS  Google Scholar 

  37. Hutnan M, Drtil M, Mrafkova L (2000) Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211

    Article  CAS  PubMed  Google Scholar 

  38. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Unverwood SA, Yomano LP, York SW, Zaldivar J, Zhou SD (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  PubMed  Google Scholar 

  39. Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997

    Article  CAS  PubMed  Google Scholar 

  40. Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2006) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl Biochem Biotechnol 129–132:795–807

    Article  PubMed  Google Scholar 

  41. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  42. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  PubMed  Google Scholar 

  43. Jin F, Cao J, Kishida H, Moriya T, Enomoto H (2007) Impact of phenolic compounds on hydrothermal oxidation of cellulose. Carbohydr Res 342:1129–1132

    Article  CAS  PubMed  Google Scholar 

  44. Ju LK, Afolabi OA (1999) Waste papers hydrolysate as soluble inducing substrate for cellulose production in continuous culture of Trichoderma reesei. Biotechnol Prog 15:91–97

    Article  CAS  PubMed  Google Scholar 

  45. Juhasz T, Szengyel Z, Szijarto N, Reczey K (2004) Effect of pH on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 113–116:201–211

    Article  PubMed  Google Scholar 

  46. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  PubMed  Google Scholar 

  47. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047

    Article  PubMed  Google Scholar 

  49. Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243

    Article  CAS  PubMed  Google Scholar 

  50. Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kerr RA, Service RF (2005) What can replace cheap oil—and when? Science 309:101

    Article  CAS  PubMed  Google Scholar 

  52. Kim DW, Jang YH, Jeong YK (1997) Adsorption behaviors of two cellobiohydrolases and their core proteins from Trichoderma reesei on avicel PH101. Biotechnol Lett 9:893–897

    Article  Google Scholar 

  53. Kim DW, Yang JH, Jeong YK (1988) Adsorption of cellulose from Trichoderma viride on microcrystalline cellulose. Appl Microbiol Biotechnol 28:148–154

    Article  CAS  Google Scholar 

  54. Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206

    Article  CAS  Google Scholar 

  55. Klyosov AA, Mitevich DV, Sinitsyn AP (1986) Role of the activity and adsorption of cellulose in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25:540–542

    Article  CAS  Google Scholar 

  56. Kotchoni OS, Shonukan OO, Gachomo WE (2003) Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression. Afr J Biotechnol 2:140–146

    Article  CAS  Google Scholar 

  57. Kubo Y, Takagi H, Nakamori S (2000) Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J Biosci Bioeng 90:619–624

    Article  CAS  PubMed  Google Scholar 

  58. Kuhad RC, Johri BN (1992) Fungal decomposition of peddy straw: light and scanning microscopic study. Indian J Microbiol 32:255–258

    Google Scholar 

  59. Kuhad RC, Kumar M, Singh A (1994) A hypercellololytic mutant of Fusarium oxysporum. Lett Appl Microbiol 19:397–400

    Article  CAS  PubMed  Google Scholar 

  60. Lambert WD, Du L, Ma Y, Loha V, Burapatana V, Prokop A, Tanner RD, Pamment NB (2003) The effect of pH on the foam fractionation of beta-glucosidase and cellulase. Bioresour Technol 87:247–253

    Article  CAS  PubMed  Google Scholar 

  61. Lamed R, Bayer EA (1988) The cellulosome of Clostridium thermocellum. Adv Appl Microbiol 33:1–46

    Article  Google Scholar 

  62. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660

    Article  CAS  PubMed  Google Scholar 

  64. Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Microbiol Biotechnol 70:430–436

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from flavedo and albedo of orange peels. Chem Eng J 120:203–209

    Article  CAS  Google Scholar 

  66. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Macris BJ, Kekos D, Evangelidou E (1989) A simple and inexpensive method for cellulose and β-glucosidase production by Neurospora crassa. Appl Microbiol Biotechnol 31:150–151

    Article  CAS  Google Scholar 

  69. Madamwar D, Patel S (1992) Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic wastes: In: Malik VS, Sridhar P (eds) Industrial biotechnology. IBH, Oxford, New Delhi, pp 471–478

    Google Scholar 

  70. Maheshwari DK, Gohade S, Paul J, Verma A (1994) A paper mill sludge as a potential source for cellulose production by Trichoderma reesei QM9123 and Aspergillus niger using mixed cultivation. Carbohydr Polym 23:161–163

    Article  CAS  Google Scholar 

  71. Mane VP, Patil SS, Syed AA, Baig MM (2007) Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer. J Zhejiang Univ Sci B 8:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    CAS  PubMed  Google Scholar 

  73. Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424

    Article  CAS  PubMed  Google Scholar 

  74. Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    Article  CAS  PubMed  Google Scholar 

  75. Menon K, Rao KK, Pushalkar S (1994) Production of β-glucosidase by Penicillium rubrum O stall. Indian J Exp Biol 32:706–709

    CAS  Google Scholar 

  76. Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by Clostridia. Adv Microbiol Physiol 39:31–130

    Article  CAS  Google Scholar 

  77. Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22:295–304

    Article  CAS  Google Scholar 

  78. Mukhopadhyey S, Nandi B (1999) Optimization of cellulose production by Trichoderma reesei ATTCC 26921 using a simplified medium on water hyacinth biomass. J Sci Ind Res 58:107–111

    Google Scholar 

  79. Mullar HW, Trosch W, Kuibe KD (1988) Effect of phenolic compounds on cellulose degradation by some white rot basidiomycetes. FEMS Microbiol Lett 49:87–93

    Article  Google Scholar 

  80. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  81. Nigam JN (2002) Bioconversion of water-hyacinth (Eichornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116

    Article  CAS  PubMed  Google Scholar 

  82. Nigam P, Singh D (1995) Processes for fermentative production of xylitol—a sugar substitute: a review. Process Biochem 30:117–124

    CAS  Google Scholar 

  83. Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol J 1:1266–1274

    Article  CAS  PubMed  Google Scholar 

  84. Pardo AG, Forchiassin F (1999) Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Rev Argent Microbiol 31:31–35

    CAS  PubMed  Google Scholar 

  85. Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paul J, Verma A (1990) Influence of sugars on endoglucanase and β-xylanase of a bacillus strain. Biotech Lett 22:61–64

    Article  Google Scholar 

  87. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply (Oak Ridge Natl. Lab., Oak Ridge, TN), ORNL Publ. No. TM-2005_66

  88. Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rahman SH, Choudhury JP, Ahmad AL, Kamaruddin AH (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98:554–559

    Article  CAS  PubMed  Google Scholar 

  90. Rajaram S, Verma A (1990) Production and characterization of xylanase from Bacillus thermoalkalophilus growth on agricultural wastes. Appl Microbiol Biotechnol 34:141–144

    Article  CAS  Google Scholar 

  91. Rajendran A, Gunasekaran P, Lakshmanan M (1994) Cellulase activity of Humicola fuscoatra. Indian J Microbiol 34:289–295

    Google Scholar 

  92. Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesi. Proteins 22:392–403

    Article  CAS  PubMed  Google Scholar 

  93. Reyes LM, Noyola TP (1998) Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugarcane bagasse. Biotechnol Lett 20:443–446

    Article  Google Scholar 

  94. Roberto IC, de Mancilha IM, Sato S (1999) Influence of kla on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Biprocess Eng 21:505–508

    CAS  Google Scholar 

  95. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176

    Article  CAS  Google Scholar 

  96. Rohit D, Jie H, Pin-Ching M, Ali M, Stefan C, Esteban C (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32:932–939

    Article  CAS  Google Scholar 

  97. Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saha BC (2000) Alpha-L-arabinofuranosidases—biochemistry, molecular biology and application in biotechnology. Biotech Adv 18:403–423

    Article  CAS  Google Scholar 

  99. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  100. Sharma A, Khare SK, Gupta MN (2001) Hydrolysis of rice hull by crosslinked Aspergillus niger cellulase. Bioresour Technol 78:281–284

    Article  CAS  PubMed  Google Scholar 

  101. Sharma SK, Kalra KL, Kocher S (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale up. Biomass Bioenergy 27:399–402

    Article  CAS  Google Scholar 

  102. Shiang M, Linden JC, Mohagheghi A, Grohmam K, Himmel ME (1991) Characterization of eng F, a gene for a non-cellulosomal Clostridium cellulovoras endoglucanase. Gene 182:163–167

    Google Scholar 

  103. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Fermentation of corn cobs by Aspergillus niger AS101 for the production of cellulose and single cell protein. Biomembranes 14:153–157

    CAS  Google Scholar 

  104. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1989) Production of protein and cellulase by Aspergillus niger AS101 in solid state culture. MIRCEN J 5:451–456

    Article  CAS  Google Scholar 

  105. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1990) Saccharification of cellulosic substrates by Aspergillus niger cellulase. World J Microbiol Biotechnol 6:333–336

    Article  CAS  PubMed  Google Scholar 

  106. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1991) Influency of nutritional factors on cellulose production from natural cellulosic residues by Aspergillus niger AS101. Agri Biol Res 7:19–27

    Google Scholar 

  107. Smith DC, Wood TM (1991) Xylanase production by Aspergillus awamori, development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and β-xylosidase while maintaining low protease production. Biotechnol Bioeng 38:883–890

    Article  CAS  PubMed  Google Scholar 

  108. Somerville C (2006) The billion-ton biofuels vision. Science 312:1277

    Article  CAS  PubMed  Google Scholar 

  109. Srivastava SK, Gopalkrishnan KS, Ramachandran KB (1987) The production of β-glucosidase in shake-flasks by Aspergillus wentii. J Ferment Technol 65:95–99

    Article  CAS  Google Scholar 

  110. Steiner J, Saccha C, Enzyaguirre J (1993) Culture condition for enhanced cellulose production by a native strain of Penicillium purpurogenum. World J Microbiol Biotechnol 10:280–284

    Article  Google Scholar 

  111. Szijarto N, Szengyel Z, Liden G, Reczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotechnol 113–116:115–124

    Article  PubMed  Google Scholar 

  112. Takao M, Akiyama K, Sakai T (2002) Purification and characterization of thermostable endo-1,5-α-L-arabinase from a strain of Bacillus thermodenitrificans. Appl Environ Microbiol 68:1639–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3622

    Article  CAS  PubMed  Google Scholar 

  115. Van-Wyk JPH (1997) Cellulose adsorption–desorption and cellulose saccharification during enzymatic hydrolysis of cellulose material. Biotech Lett 19:775–778

    Article  CAS  Google Scholar 

  116. Veen PWD, Ruijter GJG, Visser J (1995) An extreme cre A mutation in Aspergillus nidulans has severe effects on D-glucose utilization. Microbiol 141:2301–2306

    Article  Google Scholar 

  117. Walton NJ, Mayer MJ, Narbad A (2003) Molecules of interest: Vanillin. Phytochemistry 63:505–515

    Article  CAS  PubMed  Google Scholar 

  118. Weber S, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weil J, Westgate P, Kohlman K, Ladish MR (1994) Cellulose pretreatment of lignocellulosic substrate. Enzyme Microbiol Technol 16:1002–1004

    Article  CAS  Google Scholar 

  120. Wojtczak G, Breuil C, Yamuda J, Saddler JN (1987) A comparision of the thermostability of cellulose from various thermophilic fungi. Appl Miocrobiol Biotechnol 27:82–87

    CAS  Google Scholar 

  121. Wu J, Ju LK (1998) Enhancing enzymatic saccharification of waste news print by surfactant addition. Biotechnol Prog 14:649–652

    Article  CAS  PubMed  Google Scholar 

  122. Wulff NA, Carrer H, Pascholati SF (2006) Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr Microbiol 53:198–203

    Article  CAS  PubMed  Google Scholar 

  123. Ye XY, Ng TB, Cheng KJ (2001) Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. Int J Biochem Cell Biol 33:87–94

    Article  CAS  PubMed  Google Scholar 

  124. Yeoh HH, Tan TK, Koh SK (1986) Kinetic properties of β-glucosidase from Aspergillus ornatus. Appl Microbiol Biotechnol 25:25–28

    Article  CAS  Google Scholar 

  125. Yu H, Zeng G, Huang H, Xi X, Wang R, Huang D, Huang G, Li J (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793–802

    Article  CAS  PubMed  Google Scholar 

  126. Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J Bacteriol 182:5676–5682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the reviewers and the editorial team for their insightful suggestions regarding the review content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar.

Additional information

JIMB 2008: BioEnergy - Special issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Singh, S. & Singh, O.V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35, 377–391 (2008). https://doi.org/10.1007/s10295-008-0327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0327-8

Keywords

Navigation