1 Introduction

In this paper, we consider the existence and multiplicity of solutions for the following class of problems

$$\begin{aligned} \big ( P_\lambda \big ) \; {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + \big ( \lambda V(x) + Z(x) \big ) u^{ p(x)-1 }= f(x,u),&{} \text { in } \mathbb R^N, \\ u \ge 0,&{} \text { in } \mathbb R^N, \\ u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ),&{} \end{array}\right. } \end{aligned}$$

where \( \Delta _{ p(x) } \) is the \( p(x) \)-Laplacian operator given by

$$\begin{aligned} \Delta _{ p(x) } u = \text {div} \left( \big | \nabla u \big |^{p(x)-2} \nabla u \right) . \end{aligned}$$

Here, \( \lambda > 0 \) is a parameter, \( p :\mathbb R^N \rightarrow \mathbb R \) is a Lipschitz function, \( V,Z :\mathbb R^N \rightarrow \mathbb R \) are continuous functions with \( V \ge 0 \), and \( f :\mathbb R^N \times \mathbb R \rightarrow \mathbb R \) is continuous having a subcritical growth. Furthermore, we take into account the following set of hypotheses:

(\(H_1\)):

\( 1 < p_- = \displaystyle \inf _{ \mathbb R^N} p \le p_+ = \sup _{\mathbb R^N} p< N \).

(\(H_2\)):

\( \Omega = \text {int } V^{ -1 } (0) \ne \emptyset \) and bounded, \( \overline{\Omega } = V^{ -1 }(0) \) and \( \Omega \) can be decomposed in \( k \) connected components \( \Omega _1, \ldots , \Omega _k \) with \( \text {dist} \big ( \Omega _i, \Omega _j \big ) > 0, \, i \ne j \).

(\(H_3\)):

There exists \( M > 0 \) such that

$$\begin{aligned} \lambda V(x) + Z(x) \ge M, \, \forall x \in \mathbb R^N, \lambda \ge 1. \end{aligned}$$
(\(H_4\)):

There exists \( K > 0 \) such that

$$\begin{aligned} \big | Z(x) \big | \le K, \, \forall x \in \mathbb R^N. \end{aligned}$$
(\(f_1\)):
$$\begin{aligned} \limsup _{ |t| \rightarrow \infty } \frac{|f(x,t)|}{|t|^{ q(x)-1 }} < \infty , \text { uniformly in } x \in \mathbb R^N, \end{aligned}$$

where \( q :\mathbb R^N \rightarrow \mathbb R \) is continuous with \( p_+ < q_- \) and \(q \ll p^*=\frac{Np}{N-p}\). Here, the notation \(q \ll p^*\) means that \( \displaystyle \inf _{ \mathbb R^N} (p^*-q) > 0\).

(\(f_2\)):

\( f(x,t) = o \big ( |t|^{ p_+ - 1} \big ), \, t \rightarrow 0, \text { uniformly in } x \in \mathbb R^N \).

(\(f_3\)):

There exists \( \theta > p_+ \) such that

$$\begin{aligned} 0 < \theta F(x,t) \le f(x,t) t, \, \forall x \in \mathbb R^N, t > 0, \end{aligned}$$

where \( F(x,t) = \int _0^t f(x,s) \, \mathrm{{d}}s \).

(\(f_4\)):

\( \dfrac{f(x,t)}{t^{p_+ - 1}} \) is strictly increasing in \( t \in (0,\infty ) \), for each \( x \in \mathbb R^N \).

(\(f_5\)):

\( \forall a, b \in \mathbb R, \, a < b, \, \mathop {\mathop {\sup }\limits _{x \in \mathbb {R}^N}}\limits _{t \in [a,b]} |f(x,t)| < \infty \).

A typical example of nonlinearity verifying \( (f_1)-(f_5) \) is

$$\begin{aligned} f(x,t) = |t|^{ q(x)-2 }t, \, \forall \, x \in \mathbb R^N \, \text{ and } \, \forall t \in \mathbb R, \end{aligned}$$

where \( p_+ < q_- \) and \( q \ll p^*\).

Partial differential equations involving the \( p(x) \)-Laplacian arise, for instance, as a mathematical model for problems involving electrorheological fluids and image restorations, see [1, 2, 1113, 29]. This explains the intense research on this subject in the last decades. A lot of works, mainly treating nonlinearities with subcritical growth, are available (see [49, 1618, 2024, 28] for interesting works). Nevertheless, to the best of the author’s knowledge, this is the first work dealing with multi-bump solutions for this class of problems.

The motivation to investigate problem \( \big ( P_\lambda \big ) \) in the setting of variable exponents has been the papers [3] and [15]. In [15], inspired by del Pino and Felmer [14] and Séré [30], the authors considered \( \big ( P_\lambda \big ) \) for \( p = 2 \) and \( f(u) = u^q , q \in \big (1, \frac{N+2}{N-2} \big ) \) if \( N \ge 3 \); \( q \in (1, \infty ) \) if \( N = 1, 2 \). The authors showed that \( \big ( P_\lambda \big ) \) has at least \( 2^k-1 \) solutions \(u_\lambda \) for large values of \( \lambda \). More precisely, one solution for each non-empty subset \( \Upsilon \) of \( \{ 1,\ldots ,k \} \). Moreover, fixed \( \Upsilon \subset \{ 1,\ldots ,k \}\), it was proved that, for any sequence \( \lambda _n \rightarrow \infty \), we can extract a subsequence \(( \lambda _{n_i}) \) such that \(( u_{ \lambda _{n_i} } )\) converges strongly in \( H^1 \big ( \mathbb R^N \big ) \) to a function \( u \), which satisfies \( u = 0 \) outside \( \Omega _\Upsilon = \bigcup _{ j \in \Upsilon } \Omega _j \) and \( u_{|_{\Omega _j}}, \, j \in \Upsilon \) is a least energy solution for

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta u + Z(x) u = u^q, \quad \text { in } \Omega _j, \\ u \in H^1_0 \big ( \Omega _j \big ), \, u > 0, \quad \text { in } \Omega _j. \end{array}\right. } \end{aligned}$$

In [3], employing some different arguments than those used in [15], Alves extended the results described above to the \( p\)-Laplacian operator, assuming that in \( \big ( P_\lambda \big ) \) the nonlinearity \( f \) possesses a subcritical growth and \( 2 \le p < N \). In particular, fixed \( \Upsilon \subset \{ 1,\ldots ,k \}\), for any sequence \( \lambda _n \rightarrow \infty \), we can extract a subsequence \( (\lambda _{n_i}) \) such that \( (u_{ \lambda _{n_i} }) \) converges strongly in \( W^{ 1,p } \big ( \mathbb R^N \big ) \) to a function \( u \), which satisfies \( u = 0 \) outside \( \Omega _\Upsilon \) and \( u_{|_{\Omega _j}}, \, j \in \Upsilon \), is a least energy solution for

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta _p u + Z(x) u = f(u), \quad \text { in } \Omega _j, \\ u \in W^{ 1,p }_0 \big ( \Omega _j \big ), \, u > 0, \quad \quad \text { in } \Omega _j. \end{array}\right. } \end{aligned}$$

In the present paper, we extend the results found in [3] to the \( p(x)\)-Laplacian operator. However, we would like to emphasize that in a lot of estimates, we have used different arguments from that found in [3]. The main difference is related to the fact that for equations involving the \(p(x)\)-Laplacian operator it is not clear that Moser’s iteration method is a good tool to get the estimates for the \(L^{\infty }\)-norm. Here, we adapt some ideas explored in [18] and [25] to get these estimates. For more details see Sect. 5.

Since we intend to find nonnegative solutions, throughout this paper, we replace \( f \) by \( f^+ :\mathbb {R}^N \times \mathbb {R} \rightarrow \mathbb {R} \) given by

$$\begin{aligned} f^+(x,t) = {\left\{ \begin{array}{ll} f(x,t), &{} \text{ if } t > 0 \\ 0,&{} \text { if } t \le 0. \end{array}\right. } \end{aligned}$$

Nevertheless, for the sake of simplicity, we still write \( f \) instead of \( f^+ \).

The main theorem in this paper is the following:

Theorem 1.1

Assume that \( (H_1)-(H_4) \) and \( (f_1)-(f_5) \) hold. Then, there exist \( \lambda _0 > 0 \) with the following property: for any non-empty subset \( \Upsilon \) of \( \{1, 2, . . . , k \} \) and \( \lambda \ge \lambda _0 \), problem \( \big ( P_\lambda \big ) \) has a solution \(u_\lambda \). Moreover, if we fix the subset \( \Upsilon \), then for any sequence \( \lambda _n \rightarrow \infty \), we can extract a subsequence \( (\lambda _{n_i}) \) such that \( (u_{ \lambda _{n_i} }) \) converges strongly in \( W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) to a function \( u \), which satisfies \( u = 0 \) outside \( \Omega _\Upsilon = \bigcup _{ j \in \Upsilon } \Omega _j \) and \( u_{|_{\Omega _j}}, \, j \in \Upsilon \), is a least energy solution for

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + Z(x) u = f(x,u),&{} \text { in } \Omega _j, \\ u \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ), \, u \ge 0, &{} \text { in } \Omega _j. \end{array}\right. } \end{aligned}$$

Notations: The following notations will be used in the present work:

  • \(C\) and \(C_i\) will denote generic positive constant, which may vary from line to line;

  • In all the integrals, we omit the symbol \(dx\).

  • If \(u\) is a measurable function, we denote \(u^+\) and \(u^-\) its positive and negative part, i.e., \(u^+(x) = \max \{ u(x), 0 \}\) and \( u^-(x) = \min \{ u(x), 0 \}\).

  • If \( u,v \) are measurable functions, \( u_- = \text {ess} \displaystyle \inf _{ \! \! \! \! \! \mathbb R^N} u , u_+ = \text {ess} \displaystyle \sup _{ \! \! \! \! \! \mathbb R^N} u \) and the notation \( u \ll v \) means that \( \text {ess} \displaystyle \inf _{ \! \! \! \! \! \mathbb R^N} \left( v-u \right) > 0 \) . Moreover, we will denote by \(u^*\) the function

    $$\begin{aligned} u^*(x) = {\left\{ \begin{array}{ll} \frac{Nu(x)}{N-u(x)},&{} \text { if } u(x) < N, \\ \infty , &{}\text { if } u(x) \ge N. \end{array}\right. } \end{aligned}$$

2 Preliminaries on variable exponents Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponents Lebesgue and Sobolev spaces found in [8, 19, 21] and their references.

Let \( h \in L^\infty \big ( \mathbb R^N \big ) \) with \( h_- = \text {ess} \displaystyle \inf _{ \! \! \! \! \! \mathbb R^N} h \ge 1\). The variable exponent Lebesgue space \( L^{ h(x) } \big ( \mathbb R^N \big ) \) is defined by

$$\begin{aligned} L^{ h(x) } \big ( \mathbb R^N \big ) = \left\{ u :\mathbb R^N \rightarrow \mathbb R \, ; \, u \text { is measurable and } \int \limits _{ \mathbb R^N} \left| u \right| ^{ h(x) } < \infty \right\} , \end{aligned}$$

endowed with the norm

$$\begin{aligned} \left| u \right| _{ h(x) } = \inf \left\{ \lambda > 0 \, ; \, \int \limits _{ \mathbb R^N } \left| \frac{u}{\lambda } \right| ^{ h(x) } \le 1 \right\} . \end{aligned}$$

The variable exponent Sobolev space is defined by

$$\begin{aligned} W^{ 1,h(x) } \big ( \mathbb R^N \big ) = \left\{ u \in L^{ h(x) } \big ( \mathbb R^N \big ) \, ; \, \big \vert \nabla u \big \vert \in L^{ h(x) } \big ( \mathbb R^N \big ) \right\} , \end{aligned}$$

with the norm

$$\begin{aligned} \left\| u \right\| _{ 1,h(x) } = \inf \left\{ \lambda > 0 \, ; \, \int \limits _{ \mathbb R^N } \left( \left| \frac{\nabla u}{\lambda } \right| ^{ h(x) } + \left| \frac{u}{\lambda } \right| ^{ h(x) } \right) \le 1 \right\} . \end{aligned}$$

If \( h_- > 1 \), the spaces \( L^{ h(x) } \big ( \mathbb R^N \big ) \) and \( W^{ 1,h(x) } \big ( \mathbb R^N \big ) \) are separable and reflexive with these norms.

We are mainly interested in subspaces of \( W^{ 1,h(x) } \big ( \mathbb R^N \big ) \) given by

$$\begin{aligned} E_W = \left\{ u \in W^{ 1,h(x) } \big ( \mathbb R^N \big ) \, ; \, \int \limits _{ \mathbb R^N } W(x) |u|^{ h(x) } < \infty \right\} , \end{aligned}$$

where \( W \in C \big ( \mathbb R^N \big ) \) is such that \( W_- > 0 \). Endowing \( E_W \) with the norm

$$\begin{aligned} \left\| u \right\| _W = \inf \left\{ \lambda > 0 \, ; \, \int \limits _{ \mathbb R^N } \left( \left| \frac{\nabla u}{\lambda } \right| ^{ h(x) } + W(x)\left| \frac{u}{\lambda } \right| ^{ h(x) } \right) \le 1 \right\} , \end{aligned}$$

\( E_W \) is a Banach space. Moreover, it is easy to see that \( E_W \hookrightarrow W^{ 1,h(x) } \big ( \mathbb R^N \big ) \) continuously. In addition, we can show that \( E_W \) is reflexive. For the reader’s convenience, we recall some basic results.

Proposition 2.1

The functional \( \varrho :E_W \rightarrow \mathbb R \) defined by

$$\begin{aligned} \varrho (u) = \int \limits _{ \mathbb R^N } \left( \big \vert \nabla u \big \vert ^{ h(x) } + W(x) \left| u \right| ^{ h(x) } \right) , \end{aligned}$$
(2.1)

has the following properties:

  1. (i)

    If \( \left\| u \right\| _W \ge 1 \), then \( \left\| u \right\| _W^{ h_- } \le \varrho (u) \le \left\| u\right\| _W^{ h_+ } \).

  2. (ii)

    If \( \left\| u \right\| _W \le 1\), then \( \left\| u \right\| _W^{ h_+ }\le \varrho (u) \le \left\| u \right\| _W^{h_- }\).

In particular, for a sequence \( (u_n) \) in \( E_W \),

$$\begin{aligned}&\left\| u_n \right\| _W \rightarrow 0 \iff \varrho (u_n) \rightarrow 0, \ \text {and}, \\&(u_n) \ \text {is bounded in} \ E_W \iff \varrho (u_n) \ \text {is bounded in} \ \mathbb R. \end{aligned}$$

Remark 2.2

For the functional \( \varrho _{ h(x) } :L^{ h(x) } \big ( \mathbb R^N \big ) \rightarrow \mathbb R \) given by

$$\begin{aligned} \varrho _{ h(x) }(u) = \int \limits _{ \mathbb R^N } \left| u \right| ^{ h(x) }, \end{aligned}$$

an analogous conclusion to that of Proposition 2.1 also holds.

Proposition 2.3

Let \( m \in L^\infty \big ( \mathbb R^N \big ) \) with \( 0 < m_- \le m(x) \le h(x) \text { for a.e. } x \in \mathbb R^N \). If \( u \in L^{ h(x) } \big ( \mathbb R^N \big ) \), then \( |u|^{ m(x) } \in L^{ \frac{h(x)}{m(x)} } \big ( \mathbb R^N \big ) \) and

$$\begin{aligned} \left| |u|^{ m(x) } \right| _{ \frac{h(x)}{m(x)} } \le \max \left\{ |u|_{ h(x) }^{ m_- }, |u|_{ h(x) }^{ m_+ } \right\} \le |u|_{ h(x) }^{ m_- } + |u|_{ h(x) }^{ m_+ }. \end{aligned}$$

Related to the Lebesgue space \( L^{ h(x) } \big ( \mathbb R^N \big ) \), we have the following generalized Hölder’s inequality.

Proposition 2.4 (Hölder’s inequality)

[Hölder’s inequality] If \( h_- > 1 \), let \( h' :\mathbb R^N \rightarrow \mathbb R \) such that

$$\begin{aligned} \frac{1}{h( x)} + \frac{1}{h'(x)} = 1\quad \text { for a.e. } x \in \mathbb R^N. \end{aligned}$$

Then, for any \( u\in L^{ h( x) } \big ( \mathbb R^N \big ) \) and \( v \in L^{ h'(x) } \big ( \mathbb R^N \big ) \),

$$\begin{aligned} \int \limits _{\mathbb R^N} | uv | \, dx \le \left( \frac{1}{h_-} + \frac{1}{h'_-} \right) |u| _{ h( x) } |v|_{ h'(x) }. \end{aligned}$$

We can define variable exponent Lebesgue spaces with vector values. We say \( u = ( u_1, \ldots , u_L ) :\mathbb R^N \rightarrow \mathbb R^L \in L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \) if, and only if, \( u_i \in L^{ h(x) } \big ( \mathbb R^N \big ) \), for \( i = 1, \ldots , L \). On \( L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \), we consider the norm \( | u |_{ L^{ h(x) }( \mathbb R^N, \mathbb R^L) } = \sum _{i=1}^L | u_i |_{ h(x) } \).

We state below lemmas of Brezis–Lieb type. The proof of the two first results follows the same arguments explored at [26], while the proof of the latter can be found at [8].

Proposition 2.5 (Brezis–Lieb lemma, first version)

[Brezis–Lieb lemma, first version] Let \( \left( u_n \right) \) be a bounded sequence in \( L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \) such that \( u_n(x) \rightarrow u(x) \text { for a.e. } x \in \mathbb R^N \). Then, \( u \in L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \) and

$$\begin{aligned} \int \limits _{ \mathbb R^N } \left| \left| u_n \right| ^{ h(x) } - \left| u_n - u \right| ^{ h(x) } - \left| u \right| ^{ h(x) } \right| \, dx = o_n(1). \end{aligned}$$
(2.2)

Proposition 2.6 (Brezis–Lieb lemma, second version)

[Brezis–Lieb lemma, second version] Let \( \left( u_n \right) \) be a bounded sequence in \( L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \) with \( h_- > 1 \) and \( u_n(x) \rightarrow u(x) \text { for a.e. } x \in \mathbb R^N \). Then

$$\begin{aligned} u_n \rightharpoonup u \quad \text { in } L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ). \end{aligned}$$

Proposition 2.7 (Brezis–Lieb lemma, third version)

[Brezis–Lieb lemma, third version] Let \( (u_n) \) be a bounded sequence in \( L^{ h(x) } \big ( \mathbb R^N, \mathbb R^L \big ) \) with \( h_- > 1 \) and \( u_n(x) \rightarrow u(x) \) for a.e. \( x \in \mathbb R^N \). Then

$$\begin{aligned} \int \limits _{ \mathbb R^N } \left| \left| u_n \right| ^{ h(x)-2 } u_n - \left| u_n - u \right| ^{ h(x)-2 } \left( u_n - u \right) - | u |^{ h(x)-2 } u \right| ^{ h'(x) } \, dx = o_n(1), \end{aligned}$$
(2.3)

To finish this section, we notice that for any open subset \( \Omega \subset \mathbb R^N \), we can define in the same way the spaces \( L^{ h(x) } \big ( \Omega \big ) \) and \( W^{ 1,h(x) } \big ( \Omega \big ) \). Moreover, all the above propositions have analogous versions for these spaces and, besides, we have the following embedding Theorem of Sobolev’s type.

Proposition 2.8

([21, Theorems 1.1, 1.3]) Let \( \Omega \subset \mathbb R^N \) an open domain with the cone property, \( h :\overline{\Omega } \rightarrow \mathbb R \) satisfying \( 1 < h_- \le h_+ < N \) and \( m \in L^{\infty }_+ \big ( \Omega \big ) \).

  1. (i)

    If \( h \) is Lipschitz continuous and \( h \le m \le h^{*} \), the embedding \( W^{ 1,h(x) } \big ( \Omega \big ) \hookrightarrow L^{ m(x) } \big ( \Omega \big ) \) is continuous;

  2. (ii)

    If \( \Omega \) is bounded, \( h \) is continuous and \( m \ll h^{*} \), the embedding \( W^{ 1,h(x) } \big ( \Omega \big ) \hookrightarrow L^{ m(x) } \big ( \Omega \big ) \) is compact.

3 An auxiliary problem

In this section, we work with an auxiliary problem adapting the ideas explored in del Pino and Felmer [14] (see also [3]).

We start noting that the energy functional \( I_\lambda :E_\lambda \rightarrow \mathbb R \) associated with \( \big ( P_\lambda \big ) \) is given by

$$\begin{aligned} I_\lambda (u) = \int \limits _{ \mathbb R^N } \frac{1}{p(x)} \left( \big | \nabla u \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x) } \right) - \int \limits _{ \mathbb R^N } F(x,u), \end{aligned}$$

where \( E_\lambda = \big ( E, \Vert \cdot \Vert _\lambda \big ) \) with

$$\begin{aligned} E = \left\{ u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ) \, ; \, \int \limits _{ \mathbb R^N } V(x) |u|^{ p(x) } < \infty \right\} , \end{aligned}$$

and

$$\begin{aligned} \Vert u \Vert _\lambda = \inf \left\{ \sigma > 0 \, ; \, \varrho _{ \lambda } \left( \frac{u}{\sigma } \right) \le 1 \right\} , \end{aligned}$$

being

$$\begin{aligned} \varrho _{ \lambda }(u) = \int \limits _{ \mathbb R^N } \left( \big | \nabla u \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x) } \right) . \end{aligned}$$

Thus, \( E_\lambda \hookrightarrow W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) continuously for \( \lambda \ge 1 \) and \( E_\lambda \) is compactly embedded in \( L_{ loc }^{ h(x) } \big ( \mathbb R^N \big ) \), for all \( 1 \le h \ll p^* \). In addition, we can show that \( E_\lambda \) is a reflexive space. Also, being \( \mathcal{O} \subset \mathbb R^N \) an open set, from the relation

$$\begin{aligned} \varrho _{ \lambda , \mathcal{O} }(u) = \int \limits _{ \mathcal O } \left( \big | \nabla u \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x) } \right) \ge M \int \limits _{ \mathcal O } |u|^{ p(x) } = M \varrho _{ p(x), \mathcal {O} }(u), \end{aligned}$$
(3.1)

for all \( u \in E_\lambda \) with \( \lambda \ge 1 \), writing \( M = ( 1-\delta )^{ -1 } \nu \), for some \( 0 < \delta < 1 \) and \( \nu > 0\), we derive

$$\begin{aligned} \varrho _{ \lambda , \mathcal {O} }(u) - \nu \varrho _{ p(x), \mathcal {O} }(u) \ge \delta \varrho _{ \lambda ,\mathcal {O} }(u), \quad \forall u \in E_\lambda , \, \lambda \ge 1. \end{aligned}$$
(3.2)

Remark 3.1

From the above commentaries, in this work the parameter \(\lambda \) will be always bigger than or equal to 1.

We recall that for any \( \epsilon > 0 \), the hypotheses \( (f_1), (f_2) \) and \( (f_5) \) yield

$$\begin{aligned} f(x,t) \le \epsilon | t |^{ p(x)-1 } + C_\epsilon | t |^{ q(x)-1 }, \quad \forall x \in \mathbb R^N, \, t \in \mathbb R, \end{aligned}$$
(3.3)

and, consequently,

$$\begin{aligned} F(x,t) \le \epsilon | t |^{ p(x) } + C_\epsilon | t |^{ q(x) }, \quad \forall x \in \mathbb R^N, \, t \in \mathbb R, \end{aligned}$$
(3.4)

where \( C_\epsilon \) depends on \( \epsilon \). Moreover, for each \(\nu >0\) fixed, the assumptions \( (f_2) \) and \( (f_3) \) allow us considering the function \( a :\mathbb R^N \rightarrow \mathbb R\) given by

$$\begin{aligned} a(x) = \min \left\{ a > 0 \, ; \, \frac{f(x,a)}{a^{ p(x)-1 }} = \nu \right\} . \end{aligned}$$
(3.5)

From \((f_2)\), it follows that

$$\begin{aligned} 0 < a_- = \inf _{ x \in \mathbb R^N } a(x). \end{aligned}$$
(3.6)

Using the function \(a(x)\), we set the function \( \tilde{f} :\mathbb R^N \times \mathbb R \rightarrow \mathbb R \) given by

$$\begin{aligned} \tilde{f}(x,t) = {\left\{ \begin{array}{ll} \ \, f(x,t), \ t \le a(x) \\ \nu t^{ p(x)-1 }, \ t \ge a(x) \end{array}\right. }, \end{aligned}$$

which fulfills the inequality

$$\begin{aligned} \tilde{f}(x,t) \le \nu | t |^{ p(x)-1 }, \quad \forall x \in \mathbb R^N, t \in \mathbb R. \end{aligned}$$
(3.7)

Thus

$$\begin{aligned} \tilde{f}(x,t) t \le \nu | t |^{ p(x) }, \quad \forall x \in \mathbb R^N, t \in \mathbb R, \end{aligned}$$
(3.8)

and

$$\begin{aligned} \tilde{F}(x,t) \le \frac{\nu }{p(x)} | t |^{ p(x) }, \quad \forall x \in \mathbb R^N, t \in \mathbb R, \end{aligned}$$
(3.9)

where \( \tilde{F}(x,t) = \int _0^t \tilde{f}(x,s) \, \mathrm{{d}}s \).

Now, once that \( \Omega =\text {int } V^{ -1 } (0) \) is formed by \( k \) connected components \( \Omega _1, \ldots , \Omega _k \) with \( \text {dist} \big ( \Omega _i, \Omega _j \big ) > 0, \, i \ne j \), then for each \( j \in \{ 1, \ldots , k \} \), we are able to fix a smooth bounded domain \( \Omega '_j \) such that

$$\begin{aligned} \overline{\Omega _j} \subset \Omega '_j \, \quad \text {and} \quad \overline{\Omega '_i} \cap \overline{\Omega '_j} = \emptyset ,\quad \text {for } i \ne j. \end{aligned}$$
(3.10)

From now on, we fix a non-empty subset \( \Upsilon \subset \left\{ 1, \ldots , k \right\} \) and

$$\begin{aligned} \Omega _\Upsilon = \bigcup _{ j \in \Upsilon } \Omega _j, \, \Omega '_\Upsilon = \bigcup _{ j \in \Upsilon } \Omega '_j, \, \chi _\Upsilon = {\left\{ \begin{array}{ll} 1,&{} \text { if } x \in \Omega '_\Upsilon \\ 0,&{} \text { if } x \notin \Omega '_\Upsilon . \end{array}\right. } \end{aligned}$$

Using the above notations, we set the functions

$$\begin{aligned} g(x,t) = \chi _\Upsilon (x) f(x,t) + \big ( 1-\chi _\Upsilon (x) \big ) \tilde{f}(x,t), \, (x,t) \in \mathbb R^N \times \mathbb R \end{aligned}$$

and

$$\begin{aligned} G(x,t) = \int \limits _0^t g(x,s) \, \mathrm{{d}}s, \, (x,t) \in \mathbb R^N \times \mathbb R, \end{aligned}$$

and the auxiliary problem

$$\begin{aligned} \big ( A_\lambda \big ) \, {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x)-2 } u = g(x,u), \text { in } \mathbb R^N, \\ u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ). \end{array}\right. } \end{aligned}$$

The problem \( \big ( A_\lambda \big ) \) is related to \( \big ( P_\lambda \big ) \) in the sense that, if \( u_\lambda \) is a solution for \( \big ( A_\lambda \big ) \) verifying

$$\begin{aligned} u_\lambda (x) \le a(x), \, \forall x \in \mathbb R^N \setminus \Omega '_\Upsilon , \end{aligned}$$

then it is a solution for \( \big ( P_\lambda \big ) \).

In comparison with \( \big ( P_\lambda \big ) \), problem \( \big ( A_\lambda \big ) \) has the advantage that the energy functional associated with \( \big ( A_\lambda \big ) \), namely, \( \phi _\lambda :E_\lambda \rightarrow \mathbb R \) given by

$$\begin{aligned} \phi _\lambda (u) = \int \limits _{ \mathbb R^N } \frac{1}{p(x)} \left( \left| \nabla u \right| ^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x) } \right) - \int \limits _{ \mathbb R^N } G(x,u), \end{aligned}$$

satisfies the \( (PS) \) condition, whereas \( I_\lambda \) does not necessarily satisfy this condition. In this way, the mountain pass level (see Theorem 3.6) is a critical value for \( \phi _\lambda \).

Proposition 3.2

\( \phi _\lambda \) satisfies the mountain pass geometry.

Proof

From (3.4) and (3.9),

$$\begin{aligned} \phi _\lambda (u) \ge \frac{1}{p_+} \varrho _\lambda (u) - \epsilon \int \limits _{ \mathbb R^N } |u|^{ p(x) } - C_\epsilon \int \limits _{ \mathbb R^N } |u|^{ q(x) } - \frac{\nu }{p_-} \int \limits _{\mathbb R^N} |u|^{ p(x) }, \end{aligned}$$

for \( \epsilon > 0 \) and \( C_\epsilon > 0 \) be a constant depending on \( \epsilon \). By (3.1), fixing \( \epsilon < \frac{M}{p_+} \) and \( \nu < p_- M \left( \frac{1}{p_+}-\frac{\epsilon }{M} \right) \) and assuming \( \Vert u \Vert _\lambda < \min \left\{ 1, 1/C_q \right\} \), where \( | v |_{ q(x) } \le C_q \Vert v \Vert _\lambda , \, \forall v \in E_\lambda \), we derive from Proposition 2.1

$$\begin{aligned} \phi _\lambda (u) \ge \alpha \Vert u \Vert ^{ p_+ }_\lambda - C \Vert u \Vert ^{q_-}_\lambda , \end{aligned}$$

where \( \alpha = \left( \frac{1}{p_+} - \frac{\epsilon }{M} \right) - \frac{\nu }{p_-M} > 0 \). Once \( p_+ < q_- \), the first part of the mountain pass geometry is satisfied. Now, fixing \(v \in C^{\infty }_{0}(\Omega _\Upsilon )\), we have for \(t \ge 0\)

$$\begin{aligned} \phi _{\lambda }(tv)= \int \limits _{ \mathbb R^N } \frac{t^{p(x)}}{p(x)} \left( \left| \nabla v \right| ^{ p(x) } + Z(x) \big ) | v |^{ p(x) } \right) - \int \limits _{ \mathbb R^N } F(x,tv). \end{aligned}$$

If \(t>1\), by \((f_3)\),

$$\begin{aligned} \phi _{\lambda }(tv) \le \frac{t^{p^{+}}}{p_{-}} \int \limits _{ \mathbb R^N }\left( \left| \nabla v \right| ^{ p(x) } + Z(x) \big ) | v |^{ p(x) } \right) -C_1t^{\theta }\int \limits _{\mathbb {R}^{N}}|v|^{\theta }-C_2, \end{aligned}$$

and so,

$$\begin{aligned} \phi _\lambda (tv) \rightarrow -\infty \quad \text{ as } \quad t \rightarrow +\infty . \end{aligned}$$

The last limit implies that \(\phi _{\lambda }\) verifies the second geometry of the mountain pass. \(\square \)

Proposition 3.3

All \( (PS)_d \) sequences for \( \phi _\lambda \) are bounded in \( E_\lambda \).

Proof

Let \( (u_n) \) be a \( (PS)_d \) sequence for \( \phi _\lambda \). So, there is \( n_0 \in \mathbb N \) such that

$$\begin{aligned} \phi _\lambda (u_n) - \frac{1}{\theta } \phi _\lambda '(u_n) u_n \le d+1 + \Vert u_n \Vert _\lambda , \text{ for } n \ge n_0. \end{aligned}$$

On the other hand, by (3.8) and (3.9)

$$\begin{aligned} \tilde{F}(x,t) - \frac{1}{\theta } \tilde{f}(x,t)t \le \left( \frac{1}{p(x)} - \frac{1}{\theta } \right) \nu | t |^{ p(x) }, \, \forall x \in \mathbb R^N,\quad t \in \mathbb R, \end{aligned}$$

which together with (3.2) gives

$$\begin{aligned} \phi _\lambda (u_n) - \frac{1}{\theta } \phi _\lambda '(u_n) u_n \ge \left( \frac{1}{p_+} - \frac{1}{\theta } \right) \delta \varrho _\lambda (u_n), \, \forall n \in \mathbb N. \end{aligned}$$

Hence

$$\begin{aligned} d+1 + \max \left\{ {\varrho _\lambda (u_n)}^{1/p_-}, {\varrho _\lambda (u_n)}^{1/p_+} \right\} \ge \left( \frac{1}{p_+} - \frac{1}{\theta } \right) \delta \varrho _\lambda (u_n), \, \forall n \ge n_0, \end{aligned}$$

from where it follows that \( (u_n) \) is bounded in \( E_\lambda \).\(\square \)

Proposition 3.4

If \((u_n)\) is a \((PS)_d\) sequence for \(\phi _{\lambda }\), then given \(\epsilon >0\), there is \(R>0\) such that

$$\begin{aligned} \limsup _n \int \limits _{ \mathbb R^N \setminus B_R (0) } \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) < \epsilon . \end{aligned}$$
(3.11)

Hence, once that \(g\) has a subcritical growth, if \( u \in E_\lambda \) is the weak limit of \( (u_n) \), then

$$\begin{aligned} \int \limits _{\mathbb R^N}g(x,u_n)u_n\,dx \rightarrow \int \limits _{\mathbb R^N} g(x,u)u \, dx \, \text { and } \, \int \limits _{\mathbb R^N} g(x,u_n)v \, dx \rightarrow \int \limits _{\mathbb R^N} g(x,u)v \, dx, \, \forall v \in E_\lambda . \end{aligned}$$

Proof

Let \( (u_n) \) be a \( (PS)_d \) sequence for \( \phi _\lambda , R > 0 \) large such that \( \Omega '_\Upsilon \subset B_{ \frac{R}{2} }(0) \) and \( \eta _R \in C^\infty \big ( \mathbb {R}^N \big ) \) satisfying

$$\begin{aligned} \eta _R (x) = {\left\{ \begin{array}{ll} 0, &{} x \in B_{ \frac{R}{2} }(0) \\ 1, &{} x \in \mathbb {R}^N {\setminus } B_R (0) \end{array}\right. }, \end{aligned}$$

\( 0 \le \eta _R \le 1 \) and \( \big | \nabla \eta _R \big | \le \dfrac{C}{R} \), where \( C > 0 \) does not depend on \( R \). This way,

$$\begin{aligned}&\int \limits _{ \mathbb {R}^N } \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \eta _R \\&\quad = \phi _\lambda '(u_n) \left( u_n \eta _R \right) - \int \limits _{ \mathbb {R}^N } u_n \big | \nabla u_n \big |^{ p(x)-2 } \nabla u_n \cdot \nabla \eta _R + \int \limits _{ \mathbb {R}^N \setminus \Omega '_\Upsilon } \tilde{f}(x,u_n) u_n \eta _R. \end{aligned}$$

Denoting

$$\begin{aligned} I =\int \limits _{ \mathbb {R}^N } \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \eta _R, \end{aligned}$$

it follows from (3.8),

$$\begin{aligned} I \le \phi _\lambda '(u_n) \left( u_n \eta _R \right) + \frac{C}{R} \int \limits _{ \mathbb {R}^N } | u_n | \big | \nabla u_n \big |^{ p(x)-1 } + \nu \int \limits _{ \mathbb {R}^N } | u_n |^{ p(x) } \eta _R. \end{aligned}$$

Using Hölder’s inequality 2.4 and Proposition 2.3, we derive

$$\begin{aligned} I \le \phi _\lambda '(u_n) \left( u_n \eta _R \right) + \frac{C}{R} | u_n |_{ p(x) } \max \left\{ \big | \nabla u_n \big |^{ p_- -1 }_{ p(x) }, \big | \nabla u_n \big |^{ p_+ -1 }_{ p(x) } \right\} + \frac{\nu }{M}I. \end{aligned}$$

Since \( (u_n) \) and \( \Big ( \big | \nabla u_n \big | \Big ) \) are bounded in \( L^{ p(x) } \big ( \mathbb {R}^N \big ) \) and \(\frac{\nu }{M}=1-\delta \), we obtain

$$\begin{aligned} \int \limits _{ \mathbb {R}^N \setminus B_R(0) } \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \le o_n(1) + \frac{C}{R}. \end{aligned}$$

Therefore

$$\begin{aligned} \limsup _n \int \limits _{ \mathbb {R}^N \setminus B_R(0) } \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \le \frac{C}{R}. \end{aligned}$$

So, given \( \epsilon > 0 \), choosing a \( R > 0 \) possibly still bigger, we have that \( \dfrac{C}{R} < \epsilon \), which proves (3.11). Now, we will show that

$$\begin{aligned} \int \limits _{\mathbb {R}^N}g(x,u_n)u_n \rightarrow \int \limits _{\mathbb {R}^N}g(x,u)u. \end{aligned}$$

Using the fact that \(g(x,u)u \in L^{1}(\mathbb {R}^N)\) together with (3.11) and Sobolev embeddings, given \(\epsilon >0\), we can choose \(R>0\) such that

$$\begin{aligned} \limsup _{n \rightarrow +\infty }\int \limits _{\mathbb {R}^N \setminus B_R(0)}|g(x,u_n)u_n| \le \frac{\epsilon }{4} \quad \text{ and } \quad \int \limits _{\mathbb {R}^N \setminus B_R(0)}|g(x,u)u| \le \frac{\epsilon }{4}. \end{aligned}$$

On the other hand, since \(g\) has a subcritical growth, we have by compact embeddings

$$\begin{aligned} \int \limits _{B_{R}(0)}g(x,u_n)u_n \rightarrow \int \limits _{B_{R}(0)}g(x,u)u. \end{aligned}$$

Combining the above information, we conclude that

$$\begin{aligned} \int \limits _{\mathbb {R}^N}g(x,u_n)u_n \rightarrow \int \limits _{\mathbb {R}^N}g(x,u)u. \end{aligned}$$

The same type of arguments works to prove that

$$\begin{aligned} \int \limits _{\mathbb {R}^N}g(x,u_n)v \rightarrow \int \limits _{\mathbb {R}^N}g(x,u)v \quad \forall v \in E_{\lambda }. \end{aligned}$$

\(\square \)

Proposition 3.5

\( \phi _\lambda \) verifies the \( (PS) \) condition.

Proof

Let \( (u_n) \) be a \( (PS)_d \) sequence for \( \phi _\lambda \) and \( u \in E_\lambda \) such that \(u_n \rightharpoonup u\) in \(E_{\lambda }\). Thereby, by Proposition 3.4,

$$\begin{aligned} \int \limits _{ \mathbb R^N } g(x,u_n)u_n \rightarrow \int \limits _{ \mathbb R^N } g(x,u)u \quad \text { and } \quad \int \limits _{ \mathbb R^N } g(x,u_n)v \rightarrow \int \limits _{ \mathbb R^N } g(x,u)v, \, \forall v \in E_\lambda . \end{aligned}$$

Moreover, the weak limit also gives

$$\begin{aligned} \int \limits _{ \mathbb R^N } \big | \nabla u \big |^{ p(x)-2 } \nabla u \cdot \nabla ( u_n-u ) \rightarrow 0 \end{aligned}$$

and

$$\begin{aligned} \int \limits _{ \mathbb R^N } \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x)-2 }u ( u_n-u ) \rightarrow 0. \end{aligned}$$

Now, if

$$\begin{aligned} P_n^1 (x) = \left( \big | \nabla u_n \big |^{ p(x)-2 } \nabla u_n - \big | \nabla u \big |^{ p(x)-2 } \nabla u \right) \cdot \left( \nabla u_n - \nabla u \right) \end{aligned}$$

and

$$\begin{aligned} P_n^2 (x) = \left( | u_n|^{ p(x)-2 } u_n - | u |^{ p(x)-2 } u \right) ( u_n - u ), \end{aligned}$$

we derive

$$\begin{aligned}&\int \limits _{ \mathbb R^N } \Big ( P_n^1(x) + \big ( \lambda V(x) + Z(x) \big ) P_n^2(x) \Big ) = \phi _\lambda '(u_n)u_n + \int \limits _{ \mathbb R^N } \! g(x,u_n)u_n - \phi _\lambda '(u_n)u - \int \limits _{ \mathbb R^N } \! g(x,u_n)u \\&\quad - \int \limits _{ \mathbb R^N } \left( \big | \nabla u \big |^{ p(x)-2 } \nabla u \cdot \nabla ( u_n-u ) + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x)-2 }u ( u_n-u ) \right) . \end{aligned}$$

Recalling that \(\phi _\lambda '(u_n)u_n=o_n(1)\) and \(\phi _\lambda '(u_n)u=o_n(1)\), the above limits lead to

$$\begin{aligned} \int \limits _{ \mathbb R^N } \Big ( P_n^1(x) + \big ( \lambda V(x) + Z(x) \big ) P_n^2(x) \Big ) \rightarrow 0. \end{aligned}$$

Now, the conclusion follows as in [8].\(\square \)

Theorem 3.6

The problem \( \big ( A_\lambda \big ) \) has a (nonnegative) solution, for all \( \lambda \ge 1 \).

Proof

The proof is an immediate consequence of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [10].\(\square \)

4 The \( (PS)_\infty \) condition

A sequence \( (u_n) \subset W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) is called a \( (PS)_\infty \) sequence for the family \( \left( \phi _\lambda \right) _{\lambda \ge 1} \), if there is a sequence \( ( \lambda _n ) \subset [1, \infty ) \) with \( \lambda _n \rightarrow \infty \), as \( n \rightarrow \infty \), verifying

$$\begin{aligned} \phi _{ \lambda _n }(u_n) \rightarrow c\quad \text { and }\quad \left\| \phi '_{ \lambda _n }(u_n) \right\| \rightarrow 0, \text { as } n \rightarrow \infty . \end{aligned}$$

Proposition 4.1

Let \( (u_n) \subset W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) be a \( (PS)_\infty \) sequence for \( \left( \phi _\lambda \right) _{\lambda \ge 1} \). Then, up to a subsequence, there exists \( u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) such that \( u_n \rightharpoonup u \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \big ) \). Furthermore,

  1. (i)

    \( \varrho _{ \lambda _n } (u_n-u) \rightarrow 0 \) and, consequently, \( u_n \rightarrow u \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \big ) \);

  2. (ii)

    \( u = 0 \) in \( \mathbb R^N \setminus \Omega _\Upsilon , u \ge 0 \) and \( u_{|_{\Omega _j}}, \, j \in \Upsilon \), is a solution for

    $$\begin{aligned} (P_j) \; {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + Z(x) | u |^{ p(x)-2 } u = f(x,u), \text { in } \Omega _j, \\ u \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ); \end{array}\right. } \end{aligned}$$
  3. (iii)

    \( \displaystyle \int _{\mathbb R^N} \lambda _n V(x) | u_n |^{ p(x) } \rightarrow 0 \);

  4. (iv)

    \( \varrho _{ \lambda _n, \Omega '_j } (u_n) \rightarrow \displaystyle \int _{ \Omega _j } \left( \big | \nabla u \big |^{ p(x) } + Z(x) | u |^{ p(x) } \right) , \text { for } j \in \Upsilon \);

  5. (v)

    \( \varrho _{ \lambda _n, \mathbb R^N \setminus \Omega _\Upsilon } (u_n) \rightarrow 0 \);

  6. (vi)

    \( \phi _{ \lambda _n } (u_n) \rightarrow \displaystyle \int _{ \Omega _\Upsilon } \frac{1}{p(x)} \left( \big | \nabla u \big |^{ p(x) } + Z(x) | u |^{ p(x) } \right) - \int _{ \Omega _\Upsilon } F(x,u) \).

Proof

Using the same reasoning as in the proof of Proposition 3.3, we obtain that \( \big ( \varrho _{ \lambda _n }(u_n) \big ) \) is bounded in \( \mathbb R \). Then \( \big ( \Vert u_n \Vert _{ \lambda _n } \big ) \) is bounded in \( \mathbb R \) and \( (u_n) \) is bounded in \( W^{ 1,p(x) } \big ( \mathbb R^N \big ) \). So, up to a subsequence, there exists \( u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) such that

$$\begin{aligned} u_n \rightharpoonup u \quad \text { in } W^{ 1,p(x) } \big ( \mathbb R^N \big ) \quad \text {and} \quad u_n(x) \rightarrow u(x) \quad \text {for a.e. } x \in \mathbb R^N. \end{aligned}$$

Now, for each \( m \in \mathbb N \), we define \( C_m = \left\{ x \in \mathbb R^N \, ; \, V(x) \ge \dfrac{1}{m} \right\} \). Without loss of generality, we can assume \( \lambda _n < 2 ( \lambda _n-1 ), \, \forall n \in \mathbb N \). Thus

$$\begin{aligned} \int \limits _{ C_m } | u_n |^{ p(x) } \le \frac{2m}{\lambda _n} \int \limits _{ C_m } \big ( \lambda _n V(x)+Z(x) \big ) | u_n |^{ p(x) } \le \frac{2m}{\lambda _n} \varrho _{ \lambda _n }(u_n) \le \frac{C}{\lambda _n}. \end{aligned}$$

By Fatou’s lemma, we derive

$$\begin{aligned} \int \limits _{ C_m } | u |^{ p(x) } = 0, \end{aligned}$$

which implies that \( u = 0 \) in \( C_m \) and, consequently, \( u = 0 \) in \( \mathbb R^N \setminus \overline{\Omega } \). From this, we are able to prove \((i)-(vi)\).

\((i)\) :

Since \( u = 0 \) in \( \mathbb R^N \setminus \overline{\Omega } \), repeating the argument explored in Proposition 3.5 we get

$$\begin{aligned} \int \limits _{ \mathbb R^N } \Big ( P_n^1(x) + \big ( \lambda _n V(x) + Z(x) \big ) P_n^2(x) \Big ) \rightarrow 0, \end{aligned}$$

where

$$\begin{aligned} P_n^1 (x) = \left( \big | \nabla u_n \big |^{ p(x)-2 } \nabla u_n - \big | \nabla u \big |^{ p(x)-2 } \nabla u \right) \cdot \left( \nabla u_n - \nabla u \right) \end{aligned}$$

and

$$\begin{aligned} P_n^2 (x) = \left( | u_n|^{ p(x)-2 } u_n - | u |^{ p(x)-2 } u \right) ( u_n - u ). \end{aligned}$$

Therefore, \( \varrho _{ \lambda _n } ( u_n-u ) \rightarrow 0 \), which implies \( u_n \rightarrow u \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \big ) \).

\((ii)\) :

Since \( u \in W^{ 1,p(x) } \big ( \mathbb R^N \big ) \) and \( u = 0 \) in \( \mathbb R^N \setminus \overline{\Omega } \), we have \( u \in W^{ 1,p(x) }_0 \big ( \Omega \big ) \) or, equivalently, \( u_{ |_{\Omega _j} } \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ) \), for \( j = 1, \ldots , k \). Moreover, the limit \(u_n \rightarrow u\) in \(W^{1,p(x)}(\mathbb R^N)\) combined with \(\phi '_{\lambda _n}(u_n)\varphi \rightarrow 0\) for \(\varphi \in C^{\infty }_0 \big ( \Omega _j \big )\) implies that

$$\begin{aligned} \int \limits _{\Omega _j} \left( \big | \nabla u \big |^{ p(x)-2 } \nabla u \cdot \nabla \varphi + Z(x) | u |^{ p(x)-2 } u \varphi \right) - \int \limits _{\Omega _j} g(x,u) \varphi = 0, \end{aligned}$$
(4.1)

showing that \( u_{ |_{\Omega _j} } \) is a solution for

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + Z(x) | u |^{ p(x)-2 } u = g(x,u), \text { in } \Omega _j, \\ u \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ). \end{array}\right. } \end{aligned}$$

This way, if \( j \in \Upsilon \), then \( u_{ |_{\Omega _j} } \) satisfies \( (P_j) \). On the other hand, if \( j \notin \Upsilon \), we must have

$$\begin{aligned} \int \limits _{ \Omega _j } \left( \big | \nabla u \big |^{ p(x) } + Z(x) | u |^{ p(x) } \right) - \int \limits _{ \Omega _j } \tilde{f}(x,u)u = 0. \end{aligned}$$

The above equality combined with (3.8) and (3.2) gives

$$\begin{aligned} 0 \ge \varrho _{ \lambda , \Omega _j }(u) - \nu \varrho _{ p(x), \Omega _j }(u) \ge \delta \varrho _{ \lambda , \Omega _j }(u) \ge 0, \end{aligned}$$

from where it follows \( u_{|_{\Omega _j}} = 0 \). This proves \( u = 0 \) outside \( \Omega _\Upsilon \) and \( u \ge 0 \) in \( \mathbb {R}^N \).

\((iii)\) :

It follows from (i), since

$$\begin{aligned} \int \limits _{ \mathbb R^N } \lambda _n V(x) | u_n |^{ p(x) } = \int \limits _{ \mathbb R^N } \lambda _n V(x) | u_n-u |^{ p(x) } \le 2 \varrho _{ \lambda _n }(u_n-u). \end{aligned}$$
\((iv)\) :

Let \( j \in \Upsilon \). From (i),

$$\begin{aligned} \varrho _{ p(x), \Omega '_j }( u_n-u ), \varrho _{ p(x), \Omega '_j } \big ( \nabla u_n - \nabla u \big ) \rightarrow 0. \end{aligned}$$

Then by Proposition 2.5,

$$\begin{aligned} \int \limits _{ \Omega '_j } \big ( \big | \nabla u_n \big |^{ p(x) } - \big | \nabla u \big |^{ p(x) } \big ) \rightarrow 0 \quad \text{ and } \quad \int \limits _{ \Omega '_j } Z(x) \big ( | u_n |^{ p(x) } - | u |^{ p(x) } \big ) \rightarrow 0. \end{aligned}$$

From (iii),

$$\begin{aligned} \int \limits _{ \Omega '_j } \lambda _n V(x) \big ( | u_n |^{ p(x) } - | u |^{ p(x) } \big ) = \int \limits _{ \Omega '_j \setminus \overline{\Omega _j} } \lambda _n V(x) | u_n |^{ p(x) } \rightarrow 0. \end{aligned}$$

This way

$$\begin{aligned} \varrho _{ \lambda _n, \Omega '_j } (u_n) - \varrho _{ \lambda _n, \Omega '_j } (u) \rightarrow 0. \end{aligned}$$

Once \( u = 0 \text { in } \Omega '_j \setminus \Omega _j \), we get

$$\begin{aligned} \varrho _{ \lambda _n, \Omega '_j } (u_n) \rightarrow \int \limits _{ \Omega _j } \left( | \nabla u |^{ p(x) } + Z(x) | u |^{ p(x) } \right) . \end{aligned}$$
\((v)\) :

By (i), \( \varrho _{ \lambda _n }( u_n-u ) \rightarrow 0 \), and so,

$$\begin{aligned} \varrho _{ \lambda _n, \mathbb R^N \setminus \Omega _\Upsilon }(u_n) \rightarrow 0. \end{aligned}$$
\((vi)\) :

We can write the functional \(\phi _{\lambda _n}\) in the following way

$$\begin{aligned} \phi _{ \lambda _n } (u_n)&= \sum _{ j \in \Upsilon } \int \limits _{ \Omega '_j } \frac{1}{p(x)} \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda _n V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \\&+ \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \frac{1}{p(x)} \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda _n V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) - \int \limits _{ \mathbb R^N } G(x,u_n). \end{aligned}$$

From \((i)-(v)\),

$$\begin{aligned}&\int \limits _{ \Omega '_j } \frac{1}{p(x)} \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda _n V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \\&\rightarrow \int \limits _{ \Omega _j } \frac{1}{p(x)} \left( \big | \nabla u \big |^{ p(x) } + Z(x) | u |^{ p(x) } \right) ,\\&\int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \frac{1}{p(x)} \left( \big | \nabla u_n \big |^{ p(x) } + \big ( \lambda _n V(x) + Z(x) \big ) | u_n |^{ p(x) } \right) \rightarrow 0. \end{aligned}$$

and

$$\begin{aligned} \int \limits _{ \mathbb R^N } G(x,u_n) \rightarrow \int \limits _{ \Omega _\Upsilon } F(x,u). \end{aligned}$$

Therefore

$$\begin{aligned} \phi _{ \lambda _n } (u_n) \rightarrow \int \limits _{ \Omega _\Upsilon } \frac{1}{p(x)} \left( | \nabla u |^{ p(x) } + Z(x) | u |^{ p(x) } \right) - \int \limits _{ \Omega _\Upsilon } F(x,u). \end{aligned}$$

\(\square \)

5 The boundedness of the \( \big ( A_\lambda \big ) \) solutions

In this section, we study the boundedness outside \( \Omega '_\Upsilon \) for some solutions of \( \big ( A_\lambda \big ) \). To this end, we adapt for our problem arguments found in [18] and [25].

Proposition 5.1

Let \( \big ( u_\lambda \big ) \) be a family of solutions for \( \big ( A_\lambda \big ) \) such that \( u_\lambda \rightarrow 0 \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \setminus \Omega _\Upsilon \big ) \), as \( \lambda \rightarrow \infty \). Then, there exists \( \lambda ^* > 0 \) with the following property:

$$\begin{aligned} \left| u_\lambda \right| _{ \infty , \mathbb R^N \setminus \Omega '_\Upsilon } \le a_-, \, \forall \lambda \ge \lambda ^*. \end{aligned}$$

Hence, \(u_{\lambda }\) is a solution for \((P_\lambda )\) for \(\lambda \ge \lambda ^*\).

Before to prove the above proposition, we need to show some technical lemmas.

Lemma 5.2

There exist \( x_1, \ldots , x_l \in \partial \Omega '_\Upsilon \) and corresponding \( \delta _{x_1}, \ldots , \delta _{x_l} > 0 \) such that

$$\begin{aligned} \partial \Omega '_\Upsilon \subset \mathcal{N} \left( \partial \Omega '_\Upsilon \right) : = \bigcup _{ i=1 }^l B_{ \frac{\delta _{x_i}}{2} } (x_i). \end{aligned}$$

Moreover,

$$\begin{aligned} q^{x_i}_+ \le \big ( p^{x_i}_- \big )^*, \end{aligned}$$
(5.1)

where

$$\begin{aligned} q^{x_i}_+ = \sup _{ B_{ \delta _{x_i} }({x_i}) } q, \ p^{x_i}_- = \inf _{ B_{\delta _{x_i}}(x_i) } p \, \text {and }\, \big ( p^{x_i}_- \big )^* = \frac{N p^{x_i}_-}{N-p^{x_i}_-}. \end{aligned}$$

Proof

From (3.10), \( \overline{\Omega _\Upsilon } \subset \Omega '_\Upsilon \). So, there is \( \delta > 0 \) such that

$$\begin{aligned} \overline{B_{\delta }(x)} \subset \mathbb R^N \setminus \overline{\Omega _\Upsilon }, \, \forall x \in \partial \Omega '_\Upsilon . \end{aligned}$$

Once \( q \ll p^* \), there exists \( \epsilon > 0 \) such that \( \epsilon \le p^*(y) - q(y) \), for all \( y \in \mathbb R^N \). Then, by continuity, for each \( x \in \partial \Omega '_\Upsilon \), we can choose a sufficiently small \( 0 < \delta _x \le \delta \) such that

$$\begin{aligned} q^x_+ \le \big ( p^x_- \big )^*, \end{aligned}$$

where

$$\begin{aligned} q^x_+ = \sup _{ B_{ \delta _x }(x) } q, \ p^x_- = \inf _{ B_{ \delta _x }(x) } p \, \text {and }\, \big ( p^x_- \big )^* = \frac{N p^x_-}{N-p^x_-}. \end{aligned}$$

Covering \( \partial \Omega '_\Upsilon \) by the balls \( B_{ \frac{\delta _x}{2} }(x), \, x \in \partial \Omega '_\Upsilon \), and using its compactness, there are \( x_1, \ldots , x_l \in \partial \Omega '_\Upsilon \) such that

$$\begin{aligned} \partial \Omega '_\Upsilon \subset \bigcup _{ i=1 }^l B_{ \frac{\delta _{x_i}}{2} }(x_i). \end{aligned}$$

\(\square \)

Lemma 5.3

If \( u_\lambda \) is a solution for \( \big ( A_\lambda \big ) \), in each \( B_{ \delta _{x_i} }(x_i), \, i = 1, \ldots , l \), given by Lemma 5.2, it is fulfilled

$$\begin{aligned} \int \limits _{ A_{k,\overline{\delta },x_i} } \big | \nabla u_\lambda \big |^{ p^{x_i}_- } \le C \left( \big ( k^{ q_+ } + 2 \big ) \big | {A_{k,\widetilde{\delta },x_i} } \big | +\left( \widetilde{\delta }-\overline{\delta } \right) ^{ -\big (p^{x_i}_- \big )^* } \int \limits _{ A_{k,\widetilde{\delta },x_i} } \left( u_\lambda -k \right) ^{ \big ( p^{x_i}_- \big )^* } \right) , \end{aligned}$$

where \( 0 < \overline{\delta } < \widetilde{\delta } < \delta _{ x_i } , k \ge \dfrac{a_-}{4} , C = C \big ( p_-, p_+, q_-, q_+, \nu , \delta _{ x_i } \big ) > 0 \) is a constant independent of \( k \), and for any \( R > 0 \), we denote by \(A_ { k,R,x_i }\) the set

$$\begin{aligned} A_ { k,R,x_i } = B_R(x_i) \cap \left\{ x \in \mathbb R^N \, ; \, u_\lambda (x) > k \right\} . \end{aligned}$$

Proof

We choose arbitrarily \( 0 < \overline{\delta } < \widetilde{\delta } < \delta _{x_i} \) and \( \xi \in C^{ \infty } \big ( \mathbb R^N \big ) \) with

$$\begin{aligned} 0 \le \xi \le 1, \, \text { supp } \xi \subset B_{\widetilde{\delta } }(x_i), \, \xi = 1 \text { in } B_{\overline{\delta } }(x_i) \quad \text {and} \quad \big | \nabla \xi \big | \le \frac{2}{\widetilde{\delta }-\overline{\delta }}. \end{aligned}$$

For \( k \ge \dfrac{a_-}{4} \), we define \( \eta = \xi ^{ p_+ } ( u_\lambda -k )^+ \). We notice that

$$\begin{aligned} \nabla \eta = p_+ \xi ^{ p_+-1 } (u_\lambda -k) \nabla \xi + \xi ^{ p_+ } \nabla u_\lambda \end{aligned}$$

on the set \( \left\{ u_\lambda > k \right\} \). Then, writing \( u_\lambda = u \) and taking \( \eta \) as a test function, we obtain

$$\begin{aligned}&p_+ \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+-1 } (u-k) \big | \nabla u \big |^{ p(x)-2 } \nabla u \cdot \nabla \xi + \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+ } \big | \nabla u \big |^{ p(x) } \\&\quad + \int \limits _{ A_{k,\widetilde{\delta },x_i} } \big ( \lambda V(x) + Z(x) \big ) u^{ p(x)-1 } \xi ^{ p_+ } (u-k) = \int \limits _{ A_{k,\widetilde{\delta },x_i} } g(x,u) \xi ^{ p_+ } (u-k). \end{aligned}$$

If we set

$$\begin{aligned} J = \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+ } \big | \nabla u \big |^{ p(x) }, \end{aligned}$$

using that \( \nu \le \lambda V(x) + Z(x), \, \forall x \in \mathbb R^N \), we get

$$\begin{aligned}&J \le p_+ \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+-1 } (u-k) \big | \nabla u \big |^{ p(x)-1 } \big | \nabla \xi \big |\nonumber \\&\qquad - \int \limits _{ A_{k,\widetilde{\delta },x_i} } \nu u^{ p(x)-1 } \xi ^{ p_+ } (u-k) + \int \limits _{ A_{k,\widetilde{\delta },x_i} } g(x,u) \xi ^{ p_+ } (u-k). \end{aligned}$$
(5.2)

From (5.2), (3.3) and (3.7),

$$\begin{aligned} J&\le p_+ \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+-1 } (u-k) \big | \nabla u \big |^{ p(x)-1 } \big | \nabla \xi \big | - \int \limits _{ A_{k,\widetilde{\delta },x_i} } \nu u^{ p(x)-1 } \xi ^{ p_+ } (u-k) \\&\quad + \int \limits _{ A_{k,\widetilde{\delta },x_i} } \big ( \nu u^{ p(x)-1 } + C_\nu u^{ q(x)-1 } \big ) \xi ^{ p_+ } (u-k), \end{aligned}$$

from where it follows

$$\begin{aligned} J \le p_+ \int \limits _{ A_{k,\widetilde{\delta },x_i} } \xi ^{ p_+-1 } (u-k) \big | \nabla u \big |^{ p(x)-1 } \big | \nabla \xi \big | + C_\nu \int \limits _{ A_{k,\widetilde{\delta },x_i} } u^{ q(x)-1 } (u-k). \end{aligned}$$

Using Young’s inequality, we obtain, for \( \chi \in (0,1) \),

$$\begin{aligned}&J \le \frac{p_+ (p_+-1)}{p_-} \chi ^{ \frac{p_-}{p_+-1}} J + \frac{2^{ p_+ } p_+}{p_-} \chi ^{ -p_+ } \int \limits _{ A_{k,\widetilde{\delta },x_i} } \left( \frac{u-k}{\widetilde{\delta }-\overline{\delta }} \right) ^{ p(x) } \\&\quad \quad + \frac{C_\nu (q_+-1)}{q_-} \int \limits _{ A_{k,\widetilde{\delta },x_i} } u^{ q(x) } + \frac{C_\nu \left( 1 + \delta _{ x_i }^{ q_+ } \right) }{q_-} \int \limits _{ A_{k,\widetilde{\delta },x_i} } \left( \frac{u-k}{\widetilde{\delta }-\overline{\delta }}\right) ^{ q(x) }. \end{aligned}$$

Writing

$$\begin{aligned} Q = \int \limits _{ A_{k,\widetilde{\delta },x_i} } \left( \frac{u-k}{\widetilde{\delta }-\overline{\delta }} \right) ^{ \left( p^{x_i}_- \right) ^* }, \end{aligned}$$

for \( \chi \approx 0^+ \) fixed, due to (5.1), we deduce

$$\begin{aligned} J&\le \frac{1}{2} J + \frac{2^{ p_+ } p_+}{p_-} \chi ^{ -p_+ } \Big ( \big | { A_{k,\widetilde{\delta },x_i} } \big | + Q \Big ) + \frac{C_\nu 2^{ q_+ } (q_+-1) \left( 1 + \delta _{ x_i }^{ q_+ } \right) }{q_-} \Big ( \big | { A_{k,\widetilde{\delta },x_i} } \big | + Q \Big ) \\&\quad + \frac{C_\nu 2^{ q_+ } (q_+-1) \left( 1+k^{ q_+ } \right) }{q_-} \big | { A_{k,\widetilde{\delta },x_i} } \big | + \frac{C_\nu \left( 1 + \delta _{ x_i }^{ q_+ } \right) }{q_-} \Big ( \big | { A_{k,\widetilde{\delta },x_i} } \big | + Q \Big ). \end{aligned}$$

Therefore

$$\begin{aligned} \int \limits _{ A_{k,\overline{\delta },x_i} } \big | \nabla u \big |^{ p(x) } \le J \le C \left[ \big ( k^{ q_+ } + 1 \big ) \big | A_{k,\widetilde{\delta },x_i} \big | + Q \right] , \end{aligned}$$

for a positive constant \( C = C \big ( p_-, p_+, q_-, q_+, \nu , \delta _{ x_i } \big ) \) which does not depend on \( k \). Since

$$\begin{aligned} \big | \nabla u \big |^{ p^{x_i}_- } - 1 \le \big | \nabla u \big |^{ p(x) }, \, \forall x \in B_{\delta _{x_i}}(x_i), \end{aligned}$$

we obtain

$$\begin{aligned} \int \limits _{ A_{k,\overline{\delta },x_i} } \big | \nabla u \big |^{ p^{x_i}_- }&\le C \left[ \big ( k^{ q_+ } + 1 \big ) \big | A_{k,\widetilde{\delta },x_i} \big | + Q \right] + \big | A_{k,\widetilde{\delta },x_i} \big | \\&\le C \left( \big ( k^{ q_+ } + 2 \big ) \big | A_{k,\widetilde{\delta },x_i} \big | + \left( \widetilde{\delta }-\overline{\delta } \right) ^{ -\big ( p^{x_i}_- \big )^* } \int \limits _{ A_{k,\widetilde{\delta },x_i} } \left( u-k \right) ^{ \big ( p^{x_i}_- \big )^* } \right) , \end{aligned}$$

for a positive constant \( C = C \big ( p_-, p_+, q_-, q_+, \nu , \delta _{ x_i } \big ) \) which does not depend on \( k \).\(\square \)

The next lemma can be found at ([27, Lemma 4.7]).

Lemma 5.4

Let \( (J_n) \) be a sequence of nonnegative numbers satisfying

$$\begin{aligned} J_{ n+1 } \le C B^n J_n^{ 1+\eta }, \, n=0,1,2,\ldots , \end{aligned}$$

where \( C, \eta > 0 \) and \( B > 1 \). If

$$\begin{aligned} J_0 \le C^{ - \frac{1}{\eta } } B^{ - \frac{1}{{\eta }^2} }, \end{aligned}$$

then \( J_n \rightarrow 0 \), as \( n \rightarrow \infty \).

Lemma 5.5

Let \( \big ( u_\lambda \big ) \) be a family of solutions for \( \big ( A_\lambda \big ) \) such that \( u_\lambda \rightarrow 0 \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \setminus \Omega _\Upsilon \big ) \), as \( \lambda \rightarrow \infty \). Then, there exists \( \lambda ^* > 0 \) with the following property:

$$\begin{aligned} \left| u_\lambda \right| _{ \infty , \mathcal{N} \left( \partial \Omega '_\Upsilon \right) } \le a_-, \, \forall \lambda \ge \lambda ^*. \end{aligned}$$

Proof

It is enough to prove the inequality in each ball \( B_{\frac{\delta _{x_i}}{2}} (x_i), \, i = 1, \ldots , l \), given by Lemma 5.2. We set

$$\begin{aligned} \widetilde{\delta }_n = \frac{\delta _{x_i}}{2} + \frac{\delta _{x_i}}{2^{n+1}}, \ \overline{\delta }_n = \frac{\widetilde{\delta }_n + \widetilde{\delta }_{n+1}}{2}, \ k_n = \frac{a_-}{2} \left( 1-\frac{1}{2^{n+1}} \right) , \, \forall n = 0, 1, 2, \ldots . \end{aligned}$$

Then

$$\begin{aligned} \widetilde{\delta }_n \downarrow \frac{\delta _{x_i}}{2}, \quad \widetilde{\delta }_{ n+1 } < \overline{\delta }_n < \widetilde{\delta }_n, \quad k_n \uparrow \frac{a_-}{2}. \end{aligned}$$

From now on, we fix

$$\begin{aligned} J_n(\lambda ) = J_n = \int \limits _{ A_{k_n,\widetilde{\delta }_n,x_i} } \big ( u_\lambda (x) - k_n \big )^{ \left( p^{x_i}_- \right) ^* }, \, n = 0, 1, 2, \ldots . \end{aligned}$$

and \( \xi \in C^1 \big ( \mathbb R \big ) \) such that

$$\begin{aligned} 0 \le \xi \le 1,\quad \xi (t) = 1, \text { for } t \le \frac{1}{2},\quad \text {and}\quad \xi (t) = 0, \text { for } t \ge \frac{3}{4}. \end{aligned}$$

Setting

$$\begin{aligned} \xi _n(x) = \xi \Bigg ( \frac{2^{ n+1 }}{\delta _{x_i}} \bigg ( \big | x-x_i \big |-\frac{\delta _{x_i}}{2} \bigg ) \Bigg ), \quad x \in \mathbb R^N, \quad n = 0, 1, 2, \ldots , \end{aligned}$$

we have \( \xi _n = 1 \) in \( B_{ \widetilde{\delta }_{n+1} }(x_i) \) and \( \xi _n = 0 \) outside \( B_{ \overline{\delta }_n }(x_i) \). Writing \( u_\lambda = u \), we get

$$\begin{aligned} J_{ n+1 }&\le \int \limits _{ A_{k_{n+1},\overline{\delta }_n,x_i} } \big ( (u(x) - k_{ n+1 } ) \xi _n(x) \big )^{ \left( p^{x_i}_- \right) ^* } \\&= \int \limits _{ B_{ \delta _{ x_i } }(x_i) } \big ( ( u-k_{ n+1 } )^+(x) \xi _n(x) \big )^{ \left( p^{x_i}_- \right) ^* } \\&\le C \big ( N, p^{x_i}_- \big ) \left( \int \limits _{ B_{ \delta _{ x_i } }(x_i) } \big | \nabla \big ( ( u-k_{ n+1 } )^+ \xi _n \big )(x) \big |^{ p^{x_i}_- } \right) ^{ \frac{\left( p^{x_i}_- \right) ^*}{ p^{x_i}_-}} \\&\le C \big ( N, p^{x_i}_- \big ) \left( \int \limits _{ A_{k_{n+1},\overline{\delta }_n,x_i} } \big | \nabla u \big |^{ p^{x_i}_- } + \int \limits _{ A_{k_{n+1},\overline{\delta }_n,x_i} } ( u-k_{ n+1 } )^{ p^{x_i}_- } \big | \nabla \xi _n \big |^{ p^{x_i}_- } \right) ^{ \frac{\left( p^{x_i}_- \right) ^*}{ p^{x_i}_-} }. \end{aligned}$$

Since

$$\begin{aligned} \big | \nabla \xi _n(x) \big | \le C \big ( \delta _{ x_i } \big ) 2^{ n+1 }, \, \forall x \in \mathbb R^N, \end{aligned}$$

writing \( J_{ n+1 }^{ \frac{p^{x_i}_-}{\left( p^{x_i}_- \right) ^*} } = \widetilde{J}_{ n+1 } \), we obtain

$$\begin{aligned} \widetilde{J}_{ n+1 } \le C \Big ( N, p^{x_i}_-, \delta _{ x_i } \Big ) \left( \int \limits _{ A_{k_{n+1},\overline{\delta }_n,x_i} } \big | \nabla u \big |^{ p^{x_i}_- } + 2^{ n p^{x_i}_- } \int \limits _{ A_{k_{n+1},\overline{\delta }_n,x_i} } ( u-k_{ n+1 } )^{ p^{x_i}_- } \right) . \end{aligned}$$

Using Lemma 5.3,

$$\begin{aligned} \widetilde{J}_{ n+1 }&\le C \Big ( N, p^{x_i}_-, \delta _{ x_i } \Big ) \bigg ( \left( k_{ n+1 }^{ q_+ }+2 \right) \big | A_{ k_{ n+1},\widetilde{\delta }_n,x_i } \big | \\&\quad + \left( \frac{2^{ n+3 }}{\delta _{ x_i }} \right) ^{ \left( p^{x_i}_- \right) ^* } \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ \left( p^{x_i}_- \right) ^* } + 2^{ n p^{x_i}_- } \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ p^{x_i}_- } \bigg )\\&\le C \Big ( N, p^{x_i}_-, \delta _{ x_i } \Big ) \bigg ( \left( k_{ n+1 }^{ q_+ }+2 \right) \big | A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } \big | \\&\quad + 2^{ n \left( p^{x_i}_- \right) ^* } \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ \left( p^{x_i}_- \right) ^* } + 2^{ n p^{x_i}_- } \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ p^{x_i}_- } \bigg ). \end{aligned}$$

From Young’s inequality

$$\begin{aligned} \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ p^{x_i}_- } \le C \Big ( p^{x_i}_- \Big ) \left( \big | A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } \big | + \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_{ n+1 } )^{ \left( p^{x_i}_- \right) ^* } \right) . \end{aligned}$$

Thus

$$\begin{aligned} \widetilde{J}_{ n+1 } \le C \Big ( N, p^{x_i}_-, \delta _{ x_i } \Big ) \Bigg ( \bigg ( \left( \frac{a_-}{2} \right) ^{ q_+ }+2+2^{ n p^{x_i}_- } \bigg ) \big | A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } \big | + 2^{ n \left( p^{x_i}_- \right) ^* } J_n + 2^{ n p^{ x_i }_- } J_n \Bigg ). \end{aligned}$$

Now, since

$$\begin{aligned} J_n \ge \int \limits _{ A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } } ( u-k_n)^{ \left( p^{x_i}_- \right) ^* } \ge ( k_{ n+1 }-k_n )^{ \left( p^{x_i}_- \right) ^* } \big | A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } \big | \end{aligned}$$

it follows that

$$\begin{aligned} \big | A_{ k_{ n+1 },\widetilde{\delta }_n,x_i } \big | \le \left( \frac{2^{ n+3 }}{a_-} \right) ^{ \left( p^{x_i}_- \right) ^* } J_n, \end{aligned}$$

and so,

$$\begin{aligned} \widetilde{J}_{ n+1 }&\le C \Big ( N, p^{x_i}_-, \delta _{ x_i }, a_-, q_+ \Big ) \left( 2^{ n \left( p^{x_i}_- \right) ^* } J_n + 2^{ n \big ( p^{ x_i }_- + \left( p^{x_i}_- \right) ^* \big ) } J_n + 2^{ n \left( p^{x_i}_- \right) ^* } J_n + 2^{ n p^{ x_i }_- } J_n \right) . \end{aligned}$$

Fixing \( \alpha = \big ( p^{ x_i }_- + \left( p^{x_i}_- \right) ^* \big ) \), it follows that

$$\begin{aligned} J_{ n+1 } \le C \Big ( N, p^{x_i}_-, \delta _{ x_i }, a_-, q_+ \Big ) \left( 2^{ \alpha \frac{\left( p^{x_i}_- \right) ^*}{p^{ x_i }_-} } \right) ^n { J_n }^{ \frac{\left( p^{x_i}_- \right) ^*}{p^{ x_i }_-}}, \end{aligned}$$

and consequently

$$\begin{aligned} J_{ n+1 } \le C B^n J_n^{ 1+\eta }, \end{aligned}$$

where \( C = C \Big ( N, p^{x_i}_-, \delta _{ x_i }, a_-, q_+ \Big ) , B = 2^{ \alpha \frac{\left( p^{x_i}_- \right) ^*}{p^{ x_i }_-} } \) and \( \eta = \frac{\left( p^{x_i}_- \right) ^*}{p^{ x_i }_-} -1 \). Now, once that \( u_\lambda \rightarrow 0 \) in \( W^{ 1,p(x) } \big ( \mathbb R^N \setminus \Omega _\Upsilon \big ) \), as \( \lambda \rightarrow \infty \), there exists \( \lambda _i > 0 \) such that

$$\begin{aligned} \int \limits _{ A_{ \frac{a_-}{4}, \delta _{ x_i }, x_i } } \left( u_\lambda -\frac{a_-}{4} \right) ^{ \left( p^{x_i}_- \right) ^* } = J_0(\lambda ) \le C^{ - \frac{1}{\eta } } B^{ - \frac{1}{{\eta }^2} }, \quad \lambda \ge \lambda _i. \end{aligned}$$

From Lemma 5.4, \( J_n(\lambda ) \rightarrow 0 , n \rightarrow \infty \), for all \( \lambda \ge \lambda _i\), and so,

$$\begin{aligned} u_\lambda \le \frac{a_-}{2} < a_-, \text { in } B_{\frac{\delta _{x_i}}{2}}, \text { for all } \lambda \ge \lambda _i. \end{aligned}$$

Now, taking \( \lambda ^* = \max \{ \lambda _1, \ldots , \lambda _l \} \), we conclude that

$$\begin{aligned} \left| u_\lambda \right| _{ \infty , \mathcal{N} \left( \partial \Omega '_\Upsilon \right) } < a_-, \, \forall \lambda \ge \lambda ^*. \end{aligned}$$

\(\square \)

Proof of Proposition 5.1

Fix \( \lambda \ge \lambda ^* \), where \( \lambda ^* \) is given at Lemma 5.5, and define \( \widetilde{u}_\lambda :\mathbb R^N \setminus \Omega '_\Upsilon \rightarrow \mathbb R \) given by

$$\begin{aligned} \widetilde{u}_\lambda (x) = \left( u_\lambda -a_- \right) ^+ (x). \end{aligned}$$

From Lemma 5.5, \(\widetilde{u}_\lambda \in W^{ 1,p(x) }_0 \big ( \mathbb R^N \setminus \Omega '_\Upsilon \big ) \). Our goal is showing that \(\widetilde{u}_\lambda = 0 \) in \( \mathbb R^N \setminus \Omega '_\Upsilon \). This implies

$$\begin{aligned} \left| u_\lambda \right| _{ \infty , \mathbb R^N \setminus \Omega '_\Upsilon } \le a_-. \end{aligned}$$

In fact, extending \( \widetilde{u}_\lambda = 0 \) in \( \Omega '_\Upsilon \) and taking \( \widetilde{u}_\lambda \) as a test function, we obtain

$$\begin{aligned} \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \! \! \big | \nabla u_\lambda \big |^{ p(x)-2 } \nabla u_\lambda \cdot \nabla \widetilde{u}_\lambda + \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \! \! \! \! \big ( \lambda V(x) + Z(x) \big ) u_{\lambda }^{ p(x)-2 } u_\lambda \widetilde{u}_\lambda = \! \! \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } g \left( x, u_\lambda \right) \widetilde{u}_\lambda . \end{aligned}$$

Since

$$\begin{aligned} \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \big | \nabla u_\lambda \big |^{ p(x)-2 } \nabla u_\lambda \cdot \nabla \widetilde{u}_\lambda&= \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \big | \nabla \widetilde{u}_\lambda \big |^{ p(x)}, \\ \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \! \! \! \!\big ( \lambda V(x) + Z(x) \big ) u_{\lambda }^{ p(x)-2 } u_\lambda \widetilde{u}_\lambda&= \int \limits _{ \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ } \! \! \! \! \big ( \lambda V(x) + Z(x) \big ) u_{\lambda }^{ p(x)-2 } \left( \widetilde{u}_\lambda +a_- \right) \widetilde{u}_\lambda \end{aligned}$$

and

$$\begin{aligned} \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } g \left( x, u_\lambda \right) \widetilde{u}_\lambda = \int \limits _{ \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ } \frac{g \left( x, u_\lambda \right) }{u_\lambda } \left( \widetilde{u}_\lambda +a_- \right) \widetilde{u}_\lambda , \end{aligned}$$

where

$$\begin{aligned} \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ = \left\{ x \in \mathbb R^N \setminus \Omega '_\Upsilon \, ; \, u_\lambda (x) > a_- \right\} , \end{aligned}$$

we derive

$$\begin{aligned} \int \limits _{ \mathbb R^N \setminus \Omega '_\Upsilon } \! \! \big | \nabla \widetilde{u}_\lambda \big |^{ p(x) } + \int \limits _{ \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ } \! \! \! \! \left( \big ( \lambda V(x) + Z(x) \big ) u_{\lambda }^{ p(x)-2 } -\frac{g \left( x, u_\lambda \right) }{u_\lambda } \right) \left( \widetilde{u}_\lambda +a_- \right) \widetilde{u}_\lambda = 0, \end{aligned}$$

Now, by (3.7),

$$\begin{aligned} \big ( \lambda V(x) + Z(x) \big ) u_{\lambda }^{ p(x)-2 } - \frac{g \left( x, u_\lambda \right) }{u_\lambda } > \nu u_{\lambda }^{ p(x)-2 } - \frac{\tilde{f} \left( x, u_\lambda \right) }{u_\lambda } \ge 0 \quad \text{ in } \quad \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ . \end{aligned}$$

This form, \( \widetilde{u}_\lambda = 0 \) in \( \left( \mathbb R^N \setminus \Omega '_\Upsilon \right) _+ \). Obviously, \( \widetilde{u}_\lambda = 0 \) at the points where \( u_\lambda \le a_- \), consequently, \( \widetilde{u}_\lambda = 0 \) in \( \mathbb R^N \setminus \Omega '_\Upsilon \).

6 A special critical value for \( \phi _\lambda \)

For each \( j = 1, \ldots , k \), consider

$$\begin{aligned} I_j(u) = \int \limits _{ \Omega _j } \frac{1}{p(x)} \left( \big | \nabla u \big |^{ p(x) } + Z(x) | u |^{ p(x) } \right) - \int \limits _{ \Omega _j } F(x,u), \ u \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ), \end{aligned}$$

the energy functional associated to \( (P_j) \), and

$$\begin{aligned} \phi _{ \lambda ,j }(u) = \int \limits _{ \Omega '_j } \frac{1}{p(x)} \left( \big | \nabla u \big |^{ p(x) } + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x) } \right) - \int \limits _{ \Omega '_j } F(x,u), \ u \in W^{ 1,p(x) } \big ( \Omega '_j \big ), \end{aligned}$$

the energy functional associated to

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + \big ( \lambda V(x) + Z(x) \big ) | u |^{ p(x)-2 } u = f(x,u),&{} \text { in } \Omega '_j, \\ \frac{\partial u}{\partial \eta } = 0,&{} \text { on } \partial \Omega '_j. \end{array}\right. } \end{aligned}$$

It is fulfilled that \( I_j \) and \( \phi _{ \lambda ,j } \) satisfy the mountain pass geometry and let

$$\begin{aligned} c_j = \inf _{ \gamma \in \Gamma _j } \max _{ t \in [0,1] } I_j \big ( \gamma (t) \big ) \, \text { and } \, c_{ \lambda ,j } = \inf _{ \gamma \in \Gamma _{ \lambda ,j } } \max _{ t \in [0,1] } \phi _{ \lambda ,j } \big ( \gamma (t) \big ), \end{aligned}$$

their respective mountain pass levels, where

$$\begin{aligned} \Gamma _j = \left\{ \gamma \in C \Big ( [0,1], W^{ 1,p(x) }_0 \big ( \Omega _j \big ) \Big ) \, ; \, \gamma (0) = 0 \text { and } I_j \big ( \gamma (1) \big ) < 0 \right\} \end{aligned}$$

and

$$\begin{aligned} \Gamma _{ \lambda ,j } = \left\{ \gamma \in C \Big ( [0,1], W^{ 1,p(x) } \big ( \Omega '_j \big ) \Big ) \, ; \, \gamma (0) = 0 \text { and } \phi _{ \lambda ,j } \big ( \gamma (1) \big ) < 0 \right\} . \end{aligned}$$

Invoking the \( (PS) \) condition on \( I_j \) and \( \phi _{ \lambda ,j}\), we ensure that there exist \( w_j \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ) \) and \( w_{ \lambda ,j } \in W^{ 1,p(x) } \big ( \Omega '_j \big ) \) such that

$$\begin{aligned} I_j \big ( w_j \big ) = c_j \, \text { and } \, I'_j \big ( w_j \big ) = 0 \end{aligned}$$

and

$$\begin{aligned} \phi _{ \lambda ,j } \big ( w_{ \lambda ,j } \big ) = c_{ \lambda ,j } \, \text { and } \, \phi '_{ \lambda ,j } \big ( w_{ \lambda ,j } \big ) = 0. \end{aligned}$$

Lemma 6.1

There holds that

  1. (i)

    \( 0 < c_{ \lambda ,j } \le c_j, \, \forall \lambda \ge 1, \, \forall j \in \left\{ 1, \ldots , k \right\} \);

  2. (ii)

    \( c_{ \lambda ,j } \rightarrow c_j, \text { as } \lambda \rightarrow \infty , \, \forall j \in \left\{ 1, \ldots , k \right\} \).

Proof

  1. (i)

    Once \( W^{ 1,p(x) }_0 \big ( \Omega _j \big ) \subset W^{ 1,p(x) } \big ( \Omega '_j \big ) \) and \( \phi _{ \lambda ,j } \big ( \gamma (1) \big ) = I_j \big ( \gamma (1) \big ) \) for \( \gamma \in \Gamma _j \), we have \( \Gamma _j \subset \Gamma _{ \lambda ,j } \). This way

    $$\begin{aligned} c_{ \lambda ,j } = \inf _{ \gamma \in \Gamma _{ \lambda ,j } } \max _{ t \in [0,1] } \phi _{ \lambda ,j } \big ( \gamma (t) \big ) \le \inf _{ \gamma \in \Gamma _j } \max _{ t \in [0,1] } \phi _{ \lambda ,j } \big ( \gamma (t) \big ) = \inf _{ \gamma \in \Gamma _j } \max _{ t \in [0,1] } I_j \big ( \gamma (t) \big ) = c_j. \end{aligned}$$
  2. (ii)

    It suffices to show that \( c_{ \lambda _n,j } \rightarrow c_j, \text { as } n \rightarrow \infty \), for all sequences \( ( \lambda _n ) \) in \( [1,\infty ) \) with \( \lambda _n \rightarrow \infty , \text { as } n \rightarrow \infty \). Let \( \left( \lambda _n \right) \) be such a sequence and consider an arbitrary subsequence of \( \left( c_{ \lambda _n,j } \right) \) (not relabeled) . Let \( w_n \in W^{ 1,p(x) } \big ( \Omega '_j \big ) \) with

    $$\begin{aligned} \phi _{ \lambda _n,j } \big ( w_n \big ) = c_{ \lambda _n,j } \, \text { and } \, \phi '_{ \lambda _n,j } \big ( w_n \big ) = 0. \end{aligned}$$

    By the previous item, \( \big ( c_{ \lambda _n,j } \big ) \) is bounded. Then, there exists \( \big ( w_{ n_k } \big ) \) subsequence of \( \big ( w_n \big ) \) such that \( \phi _{ \lambda _{ n_k },j } \big ( w_{ n_k } \big ) \) converges and \( \phi '_{ \lambda _{ n_k },j } \big ( w_{ n_k } \big ) = 0 \). Now, repeating the same type of arguments explored in the proof of Proposition 4.1, there is \( w \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ) \setminus \{0\} \subset W^{ 1,p(x) } \big ( \Omega '_j \big ) \) such that

    $$\begin{aligned} w_{ n_k } \rightarrow w \text { in } W^{ 1,p(x) } \big ( \Omega '_j \big ), \text { as } k \rightarrow \infty . \end{aligned}$$

    Furthermore, we also can prove that

    $$\begin{aligned} c_{ \lambda _{ n_k },j } = \phi _{ \lambda _{ n_k },j } \big ( w_{ n_k } \big ) \rightarrow I_j(w) \end{aligned}$$

    and

    $$\begin{aligned} 0 = \phi '_{ \lambda _{ n_k },j } \big ( w_{ n_k } \big ) \rightarrow I'_j(w). \end{aligned}$$

    Then, by \( (f_4) \),

    $$\begin{aligned} \lim _k c_{ \lambda _{ n_k },j } \ge c_j. \end{aligned}$$

    The last inequality together with item (i) implies

    $$\begin{aligned} c_{ \lambda _{ n_k },j } \rightarrow c_j, \text { as } k \rightarrow \infty . \end{aligned}$$

    This establishes the asserted result.

\(\square \)

In the sequel, let \( R > 1 \) verifying

$$\begin{aligned} 0< I_j \left( \frac{1}{R} w_j \right) , I_j(R w_j)< c_j, \text { for } j = 1, \ldots , k. \end{aligned}$$
(6.1)

There holds that

$$\begin{aligned} c_j = \max _{ t \in [1/R^2,1] } I_j (t R w_j ), \text { for } j = 1, \ldots , k. \end{aligned}$$

Moreover, to simplify the notation, we rename the components \( \Omega _j \) of \( \Omega \) in way such that \( \Upsilon = \{ 1, 2, \ldots , l \} \) for some \( 1 \le l \le k \). Then, we define:

$$\begin{aligned}&\gamma _0 ( t_1, \ldots , t_l )(x) = \sum _{j=1}^l t_j R w_j(x), \, \forall ( t_1, \ldots , t_l )\in [1/R^2,1]^l, \\&\Gamma _*= \Big \{ \gamma \in C \big ( [1/R^2,1]^l, E_\lambda \setminus \{ 0 \} \big ) \, ; \, \gamma = \gamma _0 \text { on } \partial [1/R^2,1]^l \Big \} \end{aligned}$$

and

$$\begin{aligned} b_{ \lambda , \Upsilon } = \inf _{ \gamma \in \Gamma _*} \max _{ ( t_1, \ldots , t_l )\in [1/R^2,1]^l } \phi _\lambda \big ( \gamma ( t_1, \ldots , t_l ) \big ). \end{aligned}$$

Next, our intention is proving that \( b_{ \lambda , \Upsilon } \) is a critical value for \( \phi _\lambda \). However, to do this, we need to some technical lemmas. The arguments used are the same found in [3]; however, for reader’s convenience, we will repeat their proofs

Lemma 6.2

For all \( \gamma \in \Gamma _*\), there exists \( (s_1, \ldots , s_l ) \in [1/R^2,1]^l \) such that

$$\begin{aligned} \phi '_{ \lambda ,j } \big ( \gamma ( s_1, \ldots , s_l ) \big ) \big ( \gamma ( s_1, \ldots , s_l ) \big ) = 0, \, \forall j \in \Upsilon . \end{aligned}$$

Proof

Given \( \gamma \in \Gamma _*\), consider \( \widetilde{\gamma } :[1/R^2,1]^l \rightarrow \mathbb R^l \) such that

$$\begin{aligned} \widetilde{\gamma } ( \mathbf t ) = \Big ( \phi '_{ \lambda ,1 } \big ( \gamma ( \mathbf t ) \big ) \gamma ( \mathbf t ), \ldots , \phi '_{ \lambda ,l } \big ( \gamma ( \mathbf t ) \big ) \gamma ( \mathbf t ) \Big ), \text { where } \mathbf t = ( t_1, \ldots , t_l ). \end{aligned}$$

For \( \mathbf t \in \partial [1/R^2,1]^l \), it holds \( \widetilde{\gamma } ( \mathbf t ) = \widetilde{\gamma _0} ( \mathbf t ) \). From this, we observe that there is no \( \mathbf t \in \partial [1/R^2,1]^l \) with \( \widetilde{\gamma } ( \mathbf t ) = 0 \). Indeed, for any \( j \in \Upsilon \),

$$\begin{aligned} \phi '_{ \lambda ,j } \big ( \gamma _0 ( \mathbf{{t}} ) \big ) \gamma _0 ( \mathbf{{t}} ) = I'_j ( t_j R w_j ) ( t_j R w_j ). \end{aligned}$$

This form, if \( \mathbf{{t}} \in \partial [1/R^2,1]^l \), then \( t_{j_0} =1 \) or \( t_{j_0} = \frac{1}{R^2} \), for some \( j_0 \in \Upsilon \). Consequently,

$$\begin{aligned} \phi '_{ \lambda ,j_0 } \big ( \gamma _0 ( \mathbf{{t}} ) \big ) \gamma _0 ( \mathbf{{t}} ) = I'_{j_0} ( R w_{j_0} ) ( R w_{j_0} ) \, \text { or } \, \phi '_{ \lambda ,j_0 } \big ( \gamma _0 ( \mathbf{{t}} ) \big ) \gamma _0 ( \mathbf{{t}} ) = I'_{j_0} \left( \frac{1}{R} w_{j_0} \right) \left( \frac{1}{R} w_{j_0} \right) . \end{aligned}$$

Therefore, if \( \phi '_{ \lambda ,j_0 } \big ( \gamma _0 ( \mathbf{{t}} ) \big ) \gamma _0 ( \mathbf{{t}} ) = 0 \), we get \( I_{j_0} ( R w_{j_0} ) \ge c_{j_0} \) or \( I_{j_0} \left( \frac{1}{R} w_{j_0} \right) \ge c_{j_0} \), which is a contradiction with (6.1).

Now, we compute the degree \( \deg \big ( \widetilde{\gamma }, (1/R^2,1)^l, (0, \ldots , 0 ) \big ) \). Since

$$\begin{aligned} \deg \big ( \widetilde{\gamma }, (1/R^2,1)^l, (0, \ldots , 0 ) \big ) = \deg \big ( \widetilde{\gamma _0}, (1/R^2,1)^l, (0, \ldots , 0 ) \big ), \end{aligned}$$

and, for \( \mathbf t \in (1/R^2,1)^l \),

$$\begin{aligned} \widetilde{\gamma _0} ( \mathbf t ) = 0 \iff \mathbf{{t}} = \left( \frac{1}{R}, \ldots , \frac{1}{R} \right) , \end{aligned}$$

we derive

$$\begin{aligned} \deg \big ( \widetilde{\gamma }, (1/R^2,1)^l, (0, \ldots , 0 ) \big ) \ne 0. \end{aligned}$$

This shows what was stated.\(\square \)

Proposition 6.3

If \( c_{ \lambda ,\Upsilon } = \displaystyle \sum _{ j=1 }^l c_{ \lambda ,j } \, \text { and } \, c_\Upsilon = \sum _{ j=1 }^l c_j \), then

  1. (i)

    \( c_{ \lambda ,\Upsilon } \le b_{ \lambda ,\Upsilon } \le c_\Upsilon , \, \forall \lambda \ge 1 \);

  2. (ii)

    \( b_{ \lambda ,\Upsilon } \rightarrow c_\Upsilon , \text { as } \lambda \rightarrow \infty \);

  3. (iii)

    \( \phi _\lambda \big ( \gamma (\mathbf{{t}}) \big ) < c_\Upsilon , \, \forall \lambda \ge 1, \gamma \in \Gamma _*\text { and } \mathbf{{t}} = (t_1, \ldots , t_l ) \in \partial [1/R^2,1]^l \).

Proof

  1. (i)

    Once \( \gamma _0 \in \Gamma _*\),

    $$\begin{aligned} b_{ \lambda ,\Upsilon } \le \max _{ ( t_1, \ldots , t_l ) \in [1/R^2,1]^l } \phi _\lambda \big ( \gamma _0 ( t_1, \ldots , t_l ) \big ) = \max _{ ( t_1, \ldots , t_l )\in [1/R^2,1]^l } \sum _{ j=1 }^l I_j ( t_j R w_j ) = c_\Upsilon . \end{aligned}$$

    Now, fixing \( \mathbf{s} = (s_1, \ldots , s_l) \in [1/R^2,1]^l \) given in Lemma 6.2 and recalling that

    $$\begin{aligned} c_{ \lambda ,j } = \inf \left\{ \phi _{ \lambda ,j } (u) \, ; \, u \in W^{ 1,p(x) } \big ( \Omega '_j \big ) \setminus \{ 0 \} \text { and } \phi '_{ \lambda ,j }(u)u = 0 \right\} , \end{aligned}$$

    it follows that

    $$\begin{aligned} \phi _{ \lambda ,j } \big ( \gamma ( \mathbf{s } ) \big ) \ge c_{ \lambda ,j }, \, \forall j \in \Upsilon . \end{aligned}$$

    From (3.9),

    $$\begin{aligned} \phi _{ \lambda , \mathbb R^N \setminus \Omega '_\Upsilon } (u) \ge 0, \, \forall u \in W^{ 1,p(x) } \big ( \mathbb R^N \setminus \Omega '_\Upsilon \big ), \end{aligned}$$

    which leads to

    $$\begin{aligned} \phi _\lambda \big ( \gamma ( \mathbf{t} ) \big ) \ge \sum _{ j=1 }^l \phi _{ \lambda ,j } \big ( \gamma ( \mathbf{t} ) \big ), \, \forall \mathbf t = (t_1, \ldots , t_l) \in [1/R^2,1]^l. \end{aligned}$$

    Thus

    $$\begin{aligned} \max _{ ( t_1, \ldots , t_l )\in [1/R^2,1]^l } \phi _\lambda \big ( \gamma ( t_1, \ldots , t_l ) \big ) \ge \phi _\lambda \big ( \gamma ( \mathbf s ) \big ) \ge c_{ \lambda ,\Upsilon }, \end{aligned}$$

    showing that

    $$\begin{aligned} b_{ \lambda ,\Upsilon } \ge c_{ \lambda ,\Upsilon }; \end{aligned}$$
  2. (ii)

    This limit is clear by the previous item, since we already know \( c_{ \lambda ,j } \rightarrow c_j \), as \( \lambda \rightarrow \infty \);

  3. (iii)

    For \( \mathbf t = ( t_1, \ldots , t_l ) \in \partial [1/R^2,1]^l \), it holds \( \gamma ( \mathbf t ) = \gamma _0 ( \mathbf t ) \). From this,

    $$\begin{aligned} \phi _\lambda \big ( \gamma ( \mathbf t ) \big ) = \sum _{j=1}^l I_j ( t_j R w_j ). \end{aligned}$$

    Writing

    $$\begin{aligned} \phi _\lambda \big ( \gamma ( \mathbf t ) \big ) = \mathop {\mathop {\sum }\limits _{j=1}}\limits _{j \ne j_0 }^l I_j ( t_j R w_j ) + I_{j_0} ( t_{j_0} R w_{j_0} ), \end{aligned}$$

    where \( t_{j_0} \in \left\{ \frac{1}{R^2}, 1 \right\} \), from (6.1) we derive

    $$\begin{aligned} \phi _\lambda \big ( \gamma ( \mathbf t ) \big ) \le c_\Upsilon - \epsilon , \end{aligned}$$

    for some \( \epsilon > 0 \), so (iii).

\(\square \)

Corollary 6.4

\( b_{ \lambda ,\Upsilon } \) is a critical value of \( \phi _\lambda \), for \( \lambda \) sufficiently large.

Proof

Assume \( b_{ \widetilde{\lambda },\Upsilon } \) is not a critical value of \( \phi _{\widetilde{\lambda }} \) for some \( \widetilde{\lambda }\). We will prove that exists \( \lambda _1 \) such that \( \widetilde{\lambda } < \lambda _1 \). Indeed, by item (iii) of Proposition 6.3, we have seen that

$$\begin{aligned} \phi _\lambda \big ( \gamma _0 ( \mathbf t ) \big ) < c_\Upsilon , \, \forall \lambda \ge 1, \, \mathbf t \in \partial [1/R^2,1]^l. \end{aligned}$$

This way

$$\begin{aligned} \mathcal{M} = \max _{ \mathbf t \in \partial [1/R^2,1]^l } \phi _{ \widetilde{\lambda } } \big ( \gamma _0 ( \mathbf t ) \big ) < c_\Upsilon . \end{aligned}$$

Since \( b_{ \lambda ,\Upsilon } \rightarrow c_\Upsilon \) (item (ii) of Proposition 6.3), there exists \( \lambda _1 > 1 \) such that if \( \lambda \ge \lambda _1 \), then

$$\begin{aligned} \mathcal{M} < b_{ \lambda ,\Upsilon }. \end{aligned}$$

So, if \( \widetilde{\lambda } \ge \lambda _1 \), we can find \( \tau = \tau ( \widetilde{\lambda } ) > 0 \) small enough, with the ensuing property

$$\begin{aligned} \mathcal{M} < b_{ \widetilde{\lambda },\Upsilon } - 2\tau . \end{aligned}$$
(6.2)

From the deformation’s lemma [31, Page 38], there is \( \eta :E_\lambda \rightarrow E_\lambda \) such that

$$\begin{aligned} \eta \left( \phi _{\widetilde{\lambda }}^{ b_{ \widetilde{\lambda },\Upsilon } +\tau } \right) \subset \phi _{\widetilde{\lambda }}^{ b_{ \widetilde{\lambda },\Upsilon } -\tau } \, \text { and } \, \eta (u) = u, \text { for } u \notin \phi _{\widetilde{\lambda }}^{-1} \big ( [b_{ \widetilde{\lambda },\Upsilon }-2 \tau , b_{ \widetilde{\lambda },\Upsilon }+2 \tau ] \big ). \end{aligned}$$

Then, by (6.2),

$$\begin{aligned} \eta \big ( \gamma _0 ( \mathbf t )\big ) = \gamma _0 ( \mathbf t ), \, \forall \mathbf t \in \partial [1/R^2,1]^l. \end{aligned}$$

Now, using the definition of \( b_{ \widetilde{\lambda },\Upsilon } \), there exists \( \gamma _*\in \Gamma _*\) satisfying

$$\begin{aligned} \max _{ \mathbf t \in [1/R^2,1]^l } \phi _{ \widetilde{\lambda } } \big ( \gamma _*( \mathbf t ) \big ) < b_{ \widetilde{\lambda },\Upsilon }+\tau . \end{aligned}$$
(6.3)

Defining

$$\begin{aligned} \widetilde{\gamma } ( \mathbf t ) = \eta \big ( \gamma _*( \mathbf t ) \big ), \, \mathbf t \in [1/R^2,1]^l, \end{aligned}$$

due to (6.3), we obtain

$$\begin{aligned} \phi _{ \widetilde{\lambda } } \big ( \widetilde{\gamma }( \mathbf t ) \big ) \le b_{ \widetilde{\lambda },\Upsilon } - \tau , \, \forall \mathbf t \in [1/R^2,1]^l. \end{aligned}$$

But since \( \widetilde{\gamma } \in \Gamma _*\), we deduce

$$\begin{aligned} b_{ \widetilde{\lambda },\Upsilon } \le \max _{ \mathbf t \in [1/R^2,1]^l } \phi _{\widetilde{\lambda }} \big ( \widetilde{\gamma } ( \mathbf t ) \big ) \le b_{ \widetilde{\lambda },\Upsilon }-\tau , \end{aligned}$$

a contradiction. So, \( \widetilde{\lambda } < \lambda _1\).\(\square \)

7 The proof of the main theorem

To prove Theorem 1.1, we need to find nonnegative solutions \( u_\lambda \) for large values of \( \lambda \), which converges to a least energy solution in each \( \Omega _j \) \( (j \in \Upsilon ) \) and to \( 0 \) in \(\Omega _\Upsilon ^{c}\) as \( \lambda \rightarrow \infty \). To this end, we will show two propositions which together with the Propositions 4.1 and 5.1 will imply that Theorem 1.1 holds.

Henceforth, we denote by

$$\begin{aligned} r = R^{ p_+ } \sum _{ j=1 }^l \left( \frac{1}{p_+}-\frac{1}{\theta } \right) ^{-1} c_j, \quad \mathcal{B}_r^\lambda = \big \{ u \in E_\lambda \, ; \, \varrho _\lambda (u) \le r \big \} \end{aligned}$$

and

$$\begin{aligned} \phi _\lambda ^{ c_\Upsilon } = \big \{ u \in E_\lambda \, ; \, \phi _\lambda (u) \le c_{ \Upsilon } \big \}. \end{aligned}$$

Moreover, for small values of \( \mu \),

$$\begin{aligned} \mathcal{A}_\mu ^\lambda = \left\{ u \in \mathcal{B}_r^{\lambda }\, ; \, \varrho _{ \lambda , \mathbb R^N \setminus \Omega _\Upsilon } (u) \le \mu , \, \left| \phi _{ \lambda ,j }(u)-c_j \right| \le \mu , \, \forall j \in \Upsilon \right\} . \end{aligned}$$

We observe that

$$\begin{aligned} w = \sum _{ j=1 }^l w_j \in \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon }, \end{aligned}$$

showing that \( \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon } \ne \emptyset \). Fixing

$$\begin{aligned} 0 < \mu < \frac{1}{4} \min _{ j \in \Gamma } c_j, \end{aligned}$$
(7.1)

we have the following uniform estimate of \( \big \Vert \phi '_{ \lambda }(u) \big \Vert \) on the region \( \left( \mathcal{A}_{ 2 \mu }^\lambda \setminus \mathcal{A}_\mu ^\lambda \right) \cap \phi _\lambda ^{ c_\Upsilon } \).

Proposition 7.1

Let \( \mu > 0 \) satisfying (7.1). Then, there exist \( \Lambda _*\ge 1 \) and \( \sigma _0 >0 \) independent of \( \lambda \) such that

$$\begin{aligned} \big \Vert \phi '_{ \lambda }(u) \big \Vert \ge \sigma _0, \text { for } \lambda \ge \Lambda _*\quad \text {and all}\quad u \in \left( \mathcal{A}_{ 2 \mu }^\lambda \setminus \mathcal{A}_\mu ^\lambda \right) \cap \phi _\lambda ^{ c_\Upsilon }. \end{aligned}$$
(7.2)

Proof

We assume that there exist \( \lambda _n \rightarrow \infty \) and \( u_n \in \left( \mathcal{A}_{ 2 \mu }^{\lambda _n} \setminus \mathcal{A}_\mu ^{\lambda _n} \right) \cap \phi _{\lambda _n}^{ c_\Upsilon } \) such that

$$\begin{aligned} \big \Vert \phi '_{ \lambda _n }(u_n) \big \Vert \rightarrow 0. \end{aligned}$$

Since \( u_n \in \mathcal{A}_{ 2 \mu }^{ \lambda _n } \), this implies \( \big ( \varrho _{ \lambda _n } (u_n) \big ) \) is a bounded sequence and, consequently, it follows that \( \big ( \phi _{ \lambda _n }(u_n) \big )\) is also bounded. Thus, passing a subsequence if necessary, we can assume \(\phi _{ \lambda _n }(u_n) \) converges. Thus, from Proposition 4.1, there exists \( 0 \le u \in W^{ 1,p(x) }_0 \big ( \Omega _\Upsilon \big ) \) such that \( u_{ |_{ \Omega _j } }, \, j \in \Upsilon \), is a solution for \( (P_j) \),

$$\begin{aligned} \varrho _{ \lambda _n, \mathbb R^N \setminus \Omega _\Upsilon } (u_n) \rightarrow 0 \quad \text {and} \quad \phi _{ \lambda _n,j } (u_n) \rightarrow I_j(u). \end{aligned}$$

We know that \( c_j \) is the least energy level for \( I_j \). So, if \( u_{ |_{ \Omega _j } } \ne 0 \), then \( I_j(u) \ge c_j \). But since \( \phi _{ \lambda _n } (u_n) \le c_\Upsilon \), we must analyze the following possibilities:

  1. (i)

    \( I_j(u) = c_j, \, \forall j \in \Upsilon \);

  2. (ii)

    \( I_{ j_0 }(u) = 0 \), for some \( j_o \in \Upsilon \).

If (i) occurs, then for \( n \) large, it holds

$$\begin{aligned} \varrho _{ \lambda _n, \mathbb R^N \setminus \Omega _\Upsilon } (u_n) \le \mu \, \text { and } \, \left| \phi _{ \lambda _n,j }(u_n)-c_j \right| \le \mu , \, \forall j \in \Upsilon . \end{aligned}$$

So \( u_n \in \mathcal{A}_\mu ^{\lambda _n} \), a contradiction.

If (ii) occurs, then

$$\begin{aligned} \left| \phi _{ \lambda _n,j_0 }(u_n)-c_{ j_0 } \right| \rightarrow c_{ j_0 } > 4 \mu , \end{aligned}$$

which is a contradiction with the fact that \( u_n \in \mathcal{A}_{ 2 \mu }^{\lambda _n} \). Thus, we have completed the proof.\(\square \)

Proposition 7.2

Let \( \mu > 0 \) satisfying (7.1) and \( \Lambda _*\ge 1 \) given in the previous proposition. Then, for \( \lambda \ge \Lambda _*\), there exists a solution \( u_\lambda \) of \( (A_\lambda ) \) such that \( u_\lambda \in \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon } \).

Proof

Let \( \lambda \ge \Lambda _*\). Assume that there are no critical points of \( \phi _\lambda \) in \( \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon } \). Since \( \phi _\lambda \) is a \( (PS) \) functional, there exists a constant \( d_\lambda > 0 \) such that

$$\begin{aligned} \big \Vert \phi '_\lambda (u) \big \Vert \ge d_\lambda , \text { for all } u \in \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon }. \end{aligned}$$

From Proposition 7.1, we have

$$\begin{aligned} \big \Vert \phi '_\lambda (u) \big \Vert \ge \sigma _0, \text { for all } u \in \left( \mathcal{A}_{ 2 \mu }^{\lambda } \setminus \mathcal{A}_\mu ^{\lambda } \right) \cap \phi _{\lambda }^{ c_\Upsilon }, \end{aligned}$$

where \( \sigma _0 > 0 \) does not depend on \( \lambda \). In what follows, \( \Psi :E_\lambda \rightarrow \mathbb R \) is a continuous functional verifying

$$\begin{aligned} \Psi (u) = 1, \text { for } u \in \mathcal{A}_{\frac{3}{2} \mu }^\lambda , \ \Psi (u) = 0, \text { for } u \notin \mathcal{A}_{2 \mu }^\lambda \, \text { and } \, 0 \le \Psi (u) \le 1, \, \forall u \in E_\lambda . \end{aligned}$$

We also consider \( H :\phi _\lambda ^{ c_\Upsilon } \rightarrow E_\lambda \) given by

$$\begin{aligned} H(u) = {\left\{ \begin{array}{ll} - \Psi (u) \big \Vert Y(u) \big \Vert ^{ -1 } Y(u),&{} \text { for } u \in \mathcal{A}_{2 \mu }^\lambda , \\ 0,&{} \text { for } u \notin \mathcal{A}_{2 \mu }^\lambda , \\ \end{array}\right. } \end{aligned}$$

where \( Y \) is a pseudo-gradient vector field for \( \Phi _\lambda \) on \( \mathcal{K} = \left\{ u \in E_\lambda \, ; \, \phi '_\lambda (u) \ne 0 \right\} \). Observe that \( H \) is well defined, once \( \phi '_\lambda (u) \ne 0 \), for \( u \in \mathcal{A}_{2 \mu }^\lambda \cap \phi _\lambda ^{ c_\Upsilon } \). The inequality

$$\begin{aligned} \big \Vert H(u) \big \Vert \le 1, \, \forall \lambda \ge \Lambda _* \quad \text {and}\quad u \in \phi _\lambda ^{ c_\Upsilon }, \end{aligned}$$

guarantees that the deformation flow \( \eta :[0, \infty ) \times \phi _\lambda ^{ c_\Upsilon } \rightarrow \phi _\lambda ^{ c_\Upsilon } \) defined by

$$\begin{aligned} \frac{d \eta }{dt} = H(\eta ), \ \eta (0,u) = u \in \phi _\lambda ^{ c_\Upsilon } \end{aligned}$$

verifies

$$\begin{aligned}&\frac{d}{dt} \phi _\lambda \big ( \eta (t,u) \big ) \le - \frac{1}{2} \Psi \big ( \eta (t,u) \big ) \big \Vert \phi '_\lambda \big ( \eta (t,u) \big ) \big \Vert \le 0, \end{aligned}$$
(7.3)
$$\begin{aligned}&\left\| \frac{d \eta }{dt} \right\| _\lambda = \big \Vert H(\eta ) \big \Vert _\lambda \le 1 \end{aligned}$$
(7.4)

and

$$\begin{aligned} \eta (t,u) = u \text { for all } t \ge 0 \text { and } u \in \phi _\lambda ^{ c_\Upsilon } \setminus \mathcal{A}_{2 \mu }^\lambda . \end{aligned}$$
(7.5)

We study now two paths, which are relevant for what follows:

\( \bullet \) The path \( \mathbf{t} \mapsto \eta \big ( t, \gamma _0( \mathbf{t} ) \big ), \text { where } \mathbf t = (t_1,\ldots ,t_l) \in [1/R^2, 1]^l \).

The definition of \( \gamma _0 \) combined with the condition on \( \mu \) gives

$$\begin{aligned} \gamma _0( \mathbf{t } ) \notin \mathcal{A}_{2 \mu }^\lambda , \, \forall \mathbf{t } \in \partial [1/R^2, 1]^l. \end{aligned}$$

Since

$$\begin{aligned} \phi _\lambda \big ( \gamma _0( \mathbf{t } ) \big ) < c_\Upsilon , \, \forall \mathbf{t } \in \partial [1/R^2, 1]^l, \end{aligned}$$

from (7.5), it follows that

$$\begin{aligned} \eta \big ( t, \gamma _0( \mathbf{t} ) \big ) = \gamma _0( \mathbf{t} ), \, \forall \mathbf{t} \in \partial [1/R^2, 1]^l. \end{aligned}$$

So, \( \eta \big ( t, \gamma _0( \mathbf{t} ) \big ) \in \Gamma _*\), for each \( t \ge 0 \).

\( \bullet \) The path \( \mathbf{t} \mapsto \gamma _0( \mathbf{t} ), \text { where } \mathbf t = (t_1,\ldots ,t_l) \in [1/R^2, 1]^l \).

We observe that

$$\begin{aligned} \text {supp} \big ( \gamma _0 ( \mathbf{t} ) \big )\subset \overline{\Omega _\Upsilon } \end{aligned}$$

and

$$\begin{aligned} \phi _\lambda \big ( \gamma _0 ( \mathbf{t} ) \big ) \text { does not depend on } \lambda \ge 1, \end{aligned}$$

forall \( \mathbf{t} \in [1/R^2, 1]^l \). Moreover,

$$\begin{aligned} \phi _\lambda \big ( \gamma _0 ( \mathbf{t} ) \big ) \le c_\Upsilon , \, \forall \mathbf{t} \in [1/R^2, 1]^l \end{aligned}$$

and

$$\begin{aligned} \phi _\lambda \big ( \gamma _0 ( \mathbf{t} ) \big ) = c_\Upsilon \text {if}, \quad \text { and }\quad \text { only if,}\quad t_j = \frac{1}{R}, \, \forall j \in \Upsilon . \end{aligned}$$

Therefore

$$\begin{aligned} m_0 = \sup \left\{ \phi _\lambda (u) \, ; \, u \in \gamma _0 \big ( [1/R^2,1]^l \big ) \setminus A_\mu ^\lambda \right\} \end{aligned}$$

is independent of \( \lambda \) and \( m_0 < c_\Upsilon \). Now, observing that there exists \( K_*> 0 \) such that

$$\begin{aligned} \big | \phi _{ \lambda ,j }(u) - \phi _{ \lambda ,j }(v) \big | \le K_* \Vert u-v \Vert _{ \lambda , \Omega '_j }, \, \forall u,v \in \mathcal{B}_r^\lambda \text { and } \forall j \in \Upsilon , \end{aligned}$$

we derive

$$\begin{aligned} \max _{ \mathbf{t } \in [1/R^2,1]^l } \phi _\lambda \Big ( \eta \big ( T, \gamma _0 ( \mathbf{t} ) \big ) \Big ) \le \max \left\{ m_0, c_\Upsilon -\frac{1}{2 K_*} \sigma _0 \mu \right\} , \end{aligned}$$
(7.6)

for \( T > 0 \) large.

In fact, writing \( u = \gamma _0( \mathbf{t} ) , \mathbf{t } \in [1/R^2,1]^l \), if \( u \notin A_\mu ^\lambda \), from (7.3),

$$\begin{aligned} \phi _\lambda \big ( \eta ( t, u ) \big ) \le \phi _\lambda (u) \le m_0, \, \forall t \ge 0, \end{aligned}$$

and we have nothing more to do. We assume then \( u \in A_\mu ^\lambda \) and set

$$\begin{aligned} \widetilde{\eta }(t) = \eta (t,u), \ \widetilde{d_\lambda } = \min \left\{ d_\lambda , \sigma _0 \right\} \text { and } T = \frac{\sigma _0 \mu }{K_*\widetilde{d_\lambda }}. \end{aligned}$$

Now, we will analyze the ensuing cases:

Case 1: \( \widetilde{\eta }(t) \in \mathcal{A}_{\frac{3}{2} \mu }^\lambda , \, \forall t \in [0,T] \).

Case 2: \( \widetilde{\eta }(t_0) \in \partial \mathcal{A}_{\frac{3}{2} \mu }^\lambda , \text { for some } t_0 \in [0,T] \).

Analysis of Case 1

In this case, we have \( \Psi \big ( \widetilde{\eta }(t) \big ) = 1 \) and \( \big \Vert \phi '_\lambda \big ( \widetilde{\eta }(t) \big ) \big \Vert \ge \widetilde{d_\lambda } \) for all \( t \in [0,T] \). Hence, from (7.3),

$$\begin{aligned} \phi _\lambda \big ( \widetilde{\eta }(T) \big ) = \phi _\lambda (u) + \int \limits _0^T \frac{\mathrm{{d}}}{\mathrm{{d}}s} \phi _\lambda \big ( \widetilde{\eta }(s) \big ) \, \mathrm{{d}}s \le c_\Upsilon - \frac{1}{2} \int \limits _0^T \widetilde{d_\lambda } \, \mathrm{{d}}s, \end{aligned}$$

that is,

$$\begin{aligned} \phi _\lambda \big ( \widetilde{\eta }(T) \big ) \le c_\Upsilon - \frac{1}{2} \widetilde{d_\lambda } T = c_\Upsilon - \frac{1}{2 K_*} \sigma _0 \mu , \end{aligned}$$

showing (7.6).

Analysis of Case 2

In this case, there exist \( 0 \le t_1 \le t_2 \le T \) satisfying

$$\begin{aligned}&\widetilde{\eta }(t_1) \in \partial \mathcal{A}_\mu ^\lambda , \\&\widetilde{\eta }(t_2) \in \partial \mathcal{A}_{\frac{3}{2} \mu }^\lambda , \end{aligned}$$

and

$$\begin{aligned} \widetilde{\eta }(t) \in \mathcal{A}_{\frac{3}{2} \mu }^\lambda \setminus \mathcal{A}_\mu ^\lambda , \, \forall t \in (t_1,t_2]. \end{aligned}$$

We claim that

$$\begin{aligned} \big \Vert \widetilde{\eta }(t_2)-\widetilde{\eta }(t_1) \big \Vert \ge \frac{1}{2 K_*} \mu . \end{aligned}$$

Setting \( w_1 = \widetilde{\eta }(t_1) \) and \( w_2 = \widetilde{\eta }(t_2) \), we get

$$\begin{aligned} \varrho _{ \lambda , \mathbb R^N \setminus \Omega _\Upsilon } (w_2) = \frac{3}{2} \mu \ \text { or } \, \big | \phi _{ \lambda , j_0 } (w_2) - c_{j_0} \big | = \frac{3}{2} \mu , \end{aligned}$$

for some \( j_0 \in \Upsilon \). We analyze the latter situation, once that the other one follows the same reasoning. From the definition of \( \mathcal{A}_\mu ^\lambda \),

$$\begin{aligned} \big | \phi _{ \lambda , j_0 } (w_1) - c_{j_0} \big | \le \mu , \end{aligned}$$

consequently,

$$\begin{aligned} \Vert w_2-w_1 \Vert \ge \frac{1}{K_*} \big | \phi _{ \lambda , j_0 } (w_2) - \phi _{ \lambda , j_0 } (w_1) \big | \ge \frac{1}{2 K_*} \mu . \end{aligned}$$

Then, by mean value theorem, \( t_2-t_1 \ge \frac{1}{2 K_*} \mu \) and, this form,

$$\begin{aligned} \phi _\lambda \big ( \widetilde{\eta }(T) \big ) \le \phi _\lambda (u) - \int \limits _0^T \Psi \big ( \widetilde{\eta }(s) \big ) \big \Vert \phi '_\lambda \big ( \widetilde{\eta }(s) \big ) \big \Vert \, \mathrm{{d}}s \end{aligned}$$

implying

$$\begin{aligned} \phi _\lambda \big ( \widetilde{\eta }(T) \big ) \le c_\Upsilon - \int \limits _{t_1}^{t_2} \sigma _0 \, \mathrm{{d}}s = c_\Upsilon - \sigma _0 (t_2-t_1) \le c_\Upsilon - \frac{1}{2 K_*} \sigma _0 \mu , \end{aligned}$$

which proves 7.6. Fixing \( \widehat{\eta } (t_1, \ldots , t_l) = \eta \big ( T, \gamma _0 (t_1,\ldots ,t_l) \big ) \), we have that \( \widehat{\eta } \in \Gamma _*\) and, hence,

$$\begin{aligned} b_{ \lambda , \Gamma } \le \max _{ (t_1,\ldots ,t_l) \in [1/R^2, 1] } \phi _\lambda \big ( \widehat{\eta } (t_1,\ldots ,t_l) \big ) \le \max \left\{ m_0, c_\Upsilon - \frac{1}{2 K_*} \sigma _0 \mu \right\} < c_\Upsilon , \end{aligned}$$

which contradicts the fact that \( b_{ \lambda , \Upsilon } \rightarrow c_\Upsilon \).\(\square \)

Proof of Theorem 1.1

According Proposition 7.2, for \(\mu \) satisfying (7.1) and \( \Lambda _*\ge 1 \), there exists a solution \( u_\lambda \) for \( (A_\lambda ) \) such that \( u_\lambda \in \mathcal{A}_\mu ^\lambda \cap \phi _\lambda ^{ c_\Upsilon } \), for all \(\lambda \ge \Lambda _*\).

Claim: There are \(\lambda _0 \ge \Lambda _*\) and \(\mu _0>0\) small enough, such that \(u_\lambda \) is a solution for \( \big ( P_\lambda \big )\) for \(\lambda \ge \Lambda _0\) and \(\mu \in (0, \mu _0)\).

Indeed, assume by contradiction that there are \( \lambda _n \rightarrow \infty \) and \( \mu _n \rightarrow 0 \), such that \((u_{\lambda _n})\) is not a solution for \((P_{\lambda _n})\). From Proposition 7.2, the sequence \( (u_{\lambda _n}) \) verifies:

  1. (a)

    \( \phi '_{ \lambda _n }(u_{\lambda _n}) = 0, \, \forall n \in \mathbb {N}\);

  2. (b)

    \( \varrho _{ \lambda _n, \mathbb {R}^N \setminus \Omega _\Upsilon }(u_{\lambda _n}) \rightarrow 0\);

  3. (c)

    \( \phi _{ \lambda _n,j } (u_{\lambda _n}) \rightarrow c_j, \, \forall j \in \Upsilon . \)

The item (b) ensures we can use Proposition 5.1 to deduce \( u_{\lambda _n} \) is a solution for \( \big ( P_{\lambda _n} \big ) \), for large values of \( n \), which is a contradiction, showing this way the claim.

Now, our goal is to prove the second part of the theorem. To this end, let \((u_{\lambda _n})\) be a sequence verifying the above limits. Since \( \phi _{ \lambda _n }(u_{ \lambda _n } ) \) is bounded, passing a subsequence, we obtain that \( \phi _{ \lambda _n }(u_{ \lambda _n } ) \rightarrow c \). This way, using Proposition 4.1 combined with item (c), we derive \( u_{ \lambda _n } \) converges in \( W^{ 1,p(x) } \big ( \mathbb {R}^N \big ) \) to a function \( u \in W^{ 1,p(x) } \big ( \mathbb {R}^N \big ) \), which satisfies \( u = 0 \) outside \( \Omega _\Upsilon \) and \( u_{|_{\Omega _j}}, \, j \in \Upsilon \), is a least energy solution for

$$\begin{aligned} {\left\{ \begin{array}{ll} - \Delta _{ p(x) } u + Z(x) u = f(u), &{}\text { in } \Omega _j, \\ u \in W^{ 1,p(x) }_0 \big ( \Omega _j \big ), \, u \ge 0,&{} \text { in } \Omega _j. \end{array}\right. } \end{aligned}$$