Multi-bump solutions for a class of quasilinear problems involving variable exponents

Claudianor O. Alves • Marcelo C. Ferreira

Received: 19 March 2014 / Accepted: 6 June 2014 / Published online: 19 June 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

We establish the existence of multi-bump solutions for the following class of quasilinear problems

$$
-\Delta_{p(x)} u+(\lambda V(x)+Z(x)) u^{p(x)-1}=f(x, u) \text { in } \mathbb{R}^{N}, u \geq 0 \text { in } \mathbb{R}^{N},
$$

where the nonlinearity $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function having a subcritical growth and potentials $V, Z: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous functions verifying some hypotheses. The main tool used is the variational method.

Keywords Variational Methods • Positive solutions • Asymptotic behavior of solutions • $p(x)$-Laplacian

Mathematics Subject Classification (2000) $35 \mathrm{~A} 15 \cdot 35 \mathrm{~B} 09 \cdot 35 \mathrm{~B} 40 \cdot 35 \mathrm{H} 30$

1 Introduction

In this paper, we consider the existence and multiplicity of solutions for the following class of problems

[^0]\[

\left(P_{\lambda}\right) $$
\begin{cases}-\Delta_{p(x)} u+(\lambda V(x)+Z(x)) u^{p(x)-1}=f(x, u), & \text { in } \mathbb{R}^{N} \\ u \geq 0, & \text { in } \mathbb{R}^{N} \\ u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right) & \end{cases}
$$
\]

where $\Delta_{p(x)}$ is the $p(x)$-Laplacian operator given by

$$
\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)
$$

Here, $\lambda>0$ is a parameter, $p: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Lipschitz function, $V, Z: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous functions with $V \geq 0$, and $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous having a subcritical growth. Furthermore, we take into account the following set of hypotheses:
$\left(H_{1}\right) 1<p_{-}=\inf _{\mathbb{R}^{N}} p \leq p_{+}=\sup _{\mathbb{R}^{N}} p<N$.
$\left(H_{2}\right) \Omega=\operatorname{int} V^{-1}(0) \neq \emptyset$ and bounded, $\bar{\Omega}=V^{-1}(0)$ and Ω can be decomposed in k connected components $\Omega_{1}, \ldots, \Omega_{k}$ with $\operatorname{dist}\left(\Omega_{i}, \Omega_{j}\right)>0, i \neq j$.
$\left(H_{3}\right)$ There exists $M>0$ such that

$$
\lambda V(x)+Z(x) \geq M, \forall x \in \mathbb{R}^{N}, \lambda \geq 1
$$

$\left(H_{4}\right)$ There exists $K>0$ such that

$$
|Z(x)| \leq K, \forall x \in \mathbb{R}^{N} .
$$

$\left(f_{1}\right)$

$$
\limsup _{|t| \rightarrow \infty} \frac{|f(x, t)|}{|t|^{q(x)-1}}<\infty, \text { uniformly in } x \in \mathbb{R}^{N},
$$

where $q: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuous with $p_{+}<q_{-}$and $q \ll p^{*}=\frac{N p}{N-p}$. Here, the notation $q \ll p^{*}$ means that $\inf _{\mathbb{R}^{N}}\left(p^{*}-q\right)>0$.
$\left(f_{2}\right) f(x, t)=o\left(|t|^{p_{+}-1}\right), t \rightarrow 0$, uniformly in $x \in \mathbb{R}^{N}$.
$\left(f_{3}\right)$ There exists $\theta>p_{+}$such that

$$
0<\theta F(x, t) \leq f(x, t) t, \forall x \in \mathbb{R}^{N}, t>0,
$$

where $F(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$.
$\left(f_{4}\right) \frac{f(x, t)}{t^{p+-1}}$ is strictly increasing in $t \in(0, \infty)$, for each $x \in \mathbb{R}^{N}$.
$\left(f_{5}\right) \forall a, b \in \mathbb{R}, a<b, \sup _{\substack{x \in \mathbb{R}^{N} \\ t \in[a, b]}}|f(x, t)|<\infty$.
A typical example of nonlinearity verifying $\left(f_{1}\right)-\left(f_{5}\right)$ is

$$
f(x, t)=|t|^{q(x)-2} t, \forall x \in \mathbb{R}^{N} \text { and } \forall t \in \mathbb{R},
$$

where $p_{+}<q_{-}$and $q \ll p^{*}$.
Partial differential equations involving the $p(x)$-Laplacian arise, for instance, as a mathematical model for problems involving electrorheological fluids and image restorations, see [$1,2,11-13,29]$. This explains the intense research on this subject in the last decades. A lot of works, mainly treating nonlinearities with subcritical growth, are available (see [4-9,16-$18,20-24,28$] for interesting works). Nevertheless, to the best of the author's knowledge, this is the first work dealing with multi-bump solutions for this class of problems.

The motivation to investigate problem $\left(P_{\lambda}\right)$ in the setting of variable exponents has been the papers [3] and [15]. In [15], inspired by del Pino and Felmer [14] and Séré [30], the authors considered $\left(P_{\lambda}\right)$ for $p=2$ and $f(u)=u^{q}, q \in\left(1, \frac{N+2}{N-2}\right)$ if $N \geq 3 ; q \in(1, \infty)$ if $N=1,2$. The authors showed that $\left(P_{\lambda}\right)$ has at least $2^{k}-1$ solutions u_{λ} for large values of λ. More precisely, one solution for each non-empty subset Υ of $\{1, \ldots, k\}$. Moreover, fixed $\Upsilon \subset\{1, \ldots, k\}$, it was proved that, for any sequence $\lambda_{n} \rightarrow \infty$, we can extract a subsequence $\left(\lambda_{n_{i}}\right)$ such that $\left(u_{\lambda_{n_{i}}}\right)$ converges strongly in $H^{1}\left(\mathbb{R}^{N}\right)$ to a function u, which satisfies $u=0$ outside $\Omega_{\Upsilon}=\bigcup_{j \in \Upsilon} \Omega_{j}$ and $u_{\left.\right|_{\Omega_{j}}}, j \in \Upsilon$ is a least energy solution for

$$
\begin{cases}-\Delta u+Z(x) u=u^{q}, & \text { in } \Omega_{j}, \\ u \in H_{0}^{1}\left(\Omega_{j}\right), u>0, & \text { in } \Omega_{j} .\end{cases}
$$

In [3], employing some different arguments than those used in [15], Alves extended the results described above to the p-Laplacian operator, assuming that in $\left(P_{\lambda}\right)$ the nonlinearity f possesses a subcritical growth and $2 \leq p<N$. In particular, fixed $\Upsilon \subset\{1, \ldots, k\}$, for any sequence $\lambda_{n} \rightarrow \infty$, we can extract a subsequence $\left(\lambda_{n_{i}}\right)$ such that ($u_{\lambda_{n_{i}}}$) converges strongly in $W^{1, p}\left(\mathbb{R}^{N}\right)$ to a function u, which satisfies $u=0$ outside Ω_{Υ} and $u_{\left.\right|_{j_{j}}}, j \in \Upsilon$, is a least energy solution for

$$
\begin{cases}-\Delta_{p} u+Z(x) u=f(u), & \text { in } \Omega_{j}, \\ u \in W_{0}^{1, p}\left(\Omega_{j}\right), u>0, & \text { in } \Omega_{j} .\end{cases}
$$

In the present paper, we extend the results found in [3] to the $p(x)$-Laplacian operator. However, we would like to emphasize that in a lot of estimates, we have used different arguments from that found in [3]. The main difference is related to the fact that for equations involving the $p(x)$-Laplacian operator it is not clear that Moser's iteration method is a good tool to get the estimates for the L^{∞}-norm. Here, we adapt some ideas explored in [18] and [25] to get these estimates. For more details see Sect. 5.

Since we intend to find nonnegative solutions, throughout this paper, we replace f by $f^{+}: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f^{+}(x, t)= \begin{cases}f(x, t), & \text { if } t>0 \\ 0, & \text { if } t \leq 0\end{cases}
$$

Nevertheless, for the sake of simplicity, we still write f instead of f^{+}.
The main theorem in this paper is the following:
Theorem 1.1 Assume that $\left(H_{1}\right)-\left(H_{4}\right)$ and $\left(f_{1}\right)-\left(f_{5}\right)$ hold. Then, there exist $\lambda_{0}>0$ with the following property: for any non-empty subset Υ of $\{1,2, \ldots, k\}$ and $\lambda \geq \lambda_{0}$, problem $\left(P_{\lambda}\right)$ has a solution u_{λ}. Moreover, if we fix the subset Υ, then for any sequence $\lambda_{n} \rightarrow \infty$, we can extract a subsequence $\left(\lambda_{n_{i}}\right)$ such that $\left(u_{\lambda_{n_{i}}}\right)$ converges strongly in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ to a function u, which satisfies $u=0$ outside $\Omega_{\Upsilon}=\bigcup_{j \in \Upsilon} \Omega_{j}$ and $u_{\Omega_{j}}, j \in \Upsilon$, is a least energy solution for

$$
\begin{cases}-\Delta_{p(x)} u+Z(x) u=f(x, u), & \text { in } \Omega_{j}, \\ u \in W_{0}^{1, p(x)}\left(\Omega_{j}\right), u \geq 0, & \text { in } \Omega_{j} .\end{cases}
$$

Notations: The following notations will be used in the present work:

- C and C_{i} will denote generic positive constant, which may vary from line to line;
- In all the integrals, we omit the symbol $d x$.
- If u is a measurable function, we denote u^{+}and u^{-}its positive and negative part, i.e., $u^{+}(x)=\max \{u(x), 0\}$ and $u^{-}(x)=\min \{u(x), 0\}$.
- If u, v are measurable functions, $u_{-}=\underset{\mathbb{R}^{N}}{\operatorname{ess} \inf } u, u_{+}=\underset{\mathbb{R}^{N}}{\operatorname{ess} \sup } u$ and the notation $u \ll v$ means that $\underset{\mathbb{R}^{N}}{\operatorname{ess} \inf }(v-u)>0$. Moreover, we will denote by u^{*} the function

$$
u^{*}(x)= \begin{cases}\frac{N u(x)}{N-u(x)}, & \text { if } u(x)<N \\ \infty, & \text { if } u(x) \geq N\end{cases}
$$

2 Preliminaries on variable exponents Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponents Lebesgue and Sobolev spaces found in $[8,19,21]$ and their references.

Let $h \in L^{\infty}\left(\mathbb{R}^{N}\right)$ with $h_{-}=\underset{\mathbb{R}^{N}}{\operatorname{ess} \inf } h \geq 1$. The variable exponent Lebesgue space $L^{h(x)}\left(\mathbb{R}^{N}\right)$ is defined by

$$
L^{h(x)}\left(\mathbb{R}^{N}\right)=\left\{u: \mathbb{R}^{N} \rightarrow \mathbb{R} ; u \text { is measurable and } \int_{\mathbb{R}^{N}}|u|^{h(x)}<\infty\right\}
$$

endowed with the norm

$$
|u|_{h(x)}=\inf \left\{\lambda>0 ; \int_{\mathbb{R}^{N}}\left|\frac{u}{\lambda}\right|^{h(x)} \leq 1\right\} .
$$

The variable exponent Sobolev space is defined by

$$
W^{1, h(x)}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{h(x)}\left(\mathbb{R}^{N}\right) ;|\nabla u| \in L^{h(x)}\left(\mathbb{R}^{N}\right)\right\},
$$

with the norm

$$
\|u\|_{1, h(x)}=\inf \left\{\lambda>0 ; \int_{\mathbb{R}^{N}}\left(\left|\frac{\nabla u}{\lambda}\right|^{h(x)}+\left|\frac{u}{\lambda}\right|^{h(x)}\right) \leq 1\right\} .
$$

If $h_{-}>1$, the spaces $L^{h(x)}\left(\mathbb{R}^{N}\right)$ and $W^{1, h(x)}\left(\mathbb{R}^{N}\right)$ are separable and reflexive with these norms.

We are mainly interested in subspaces of $W^{1, h(x)}\left(\mathbb{R}^{N}\right)$ given by

$$
E_{W}=\left\{u \in W^{1, h(x)}\left(\mathbb{R}^{N}\right) ; \int_{\mathbb{R}^{N}} W(x)|u|^{h(x)}<\infty\right\}
$$

where $W \in C\left(\mathbb{R}^{N}\right)$ is such that $W_{-}>0$. Endowing E_{W} with the norm

$$
\|u\|_{W}=\inf \left\{\lambda>0 ; \int_{\mathbb{R}^{N}}\left(\left|\frac{\nabla u}{\lambda}\right|^{h(x)}+W(x)\left|\frac{u}{\lambda}\right|^{h(x)}\right) \leq 1\right\},
$$

E_{W} is a Banach space. Moreover, it is easy to see that $E_{W} \hookrightarrow W^{1, h(x)}\left(\mathbb{R}^{N}\right)$ continuously. In addition, we can show that E_{W} is reflexive. For the reader's convenience, we recall some basic results.

Proposition 2.1 The functional $\varrho: E_{W} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varrho(u)=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{h(x)}+W(x)|u|^{h(x)}\right), \tag{2.1}
\end{equation*}
$$

has the following properties:
(i) If $\|u\|_{W} \geq 1$, then $\|u\|_{W}^{h_{-}} \leq \varrho(u) \leq\|u\|_{W}^{h_{+}}$.
(ii) If $\|u\|_{W} \leq 1$, then $\|u\|_{W}^{h_{+}} \leq \varrho(u) \leq\|u\|_{W}^{h_{-}}$.

In particular, for a sequence $\left(u_{n}\right)$ in E_{W},

$$
\begin{aligned}
& \left\|u_{n}\right\|_{W} \rightarrow 0 \Longleftrightarrow \varrho\left(u_{n}\right) \rightarrow 0, \text { and }, \\
& \left(u_{n}\right) \text { is bounded in } E_{W} \Longleftrightarrow \varrho\left(u_{n}\right) \text { is bounded in } \mathbb{R} .
\end{aligned}
$$

Remark 2.2 For the functional $\varrho_{h(x)}: L^{h(x)}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
\varrho_{h(x)}(u)=\int_{\mathbb{R}^{N}}|u|^{h(x)},
$$

an analogous conclusion to that of Proposition 2.1 also holds.
Proposition 2.3 Let $m \in L^{\infty}\left(\mathbb{R}^{N}\right)$ with $0<m_{-} \leq m(x) \leq h(x)$ for a.e. $x \in \mathbb{R}^{N}$. If $u \in L^{h(x)}\left(\mathbb{R}^{N}\right)$, then $|u|^{m(x)} \in L^{\frac{h(x)}{m(x)}}\left(\mathbb{R}^{N}\right)$ and

$$
\left||u|^{m(x)}\right|_{\frac{h(x)}{m(x)}} \leq \max \left\{|u|_{h(x)}^{m_{-}},|u|_{h(x)}^{m_{+}}\right\} \leq|u|_{h(x)}^{m_{-}}+|u|_{h(x)}^{m_{+}} .
$$

Related to the Lebesgue space $L^{h(x)}\left(\mathbb{R}^{N}\right)$, we have the following generalized Hölder's inequality.

Proposition 2.4 (Hölder's inequality) If $h_{-}>1$, let $h^{\prime}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\frac{1}{h(x)}+\frac{1}{h^{\prime}(x)}=1 \quad \text { for a.e. } x \in \mathbb{R}^{N}
$$

Then, for any $u \in L^{h(x)}\left(\mathbb{R}^{N}\right)$ and $v \in L^{h^{\prime}(x)}\left(\mathbb{R}^{N}\right)$,

$$
\int_{\mathbb{R}^{N}}|u v| d x \leq\left(\frac{1}{h_{-}}+\frac{1}{h_{-}^{\prime}}\right)|u|_{h(x)}|v|_{h^{\prime}(x)} .
$$

We can define variable exponent Lebesgue spaces with vector values. We say $u=$ $\left(u_{1}, \ldots, u_{L}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{L} \in L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$ if, and only if, $u_{i} \in L^{h(x)}\left(\mathbb{R}^{N}\right)$, for $i=$ $1, \ldots, L$. On $L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$, we consider the norm $|u|_{L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)}=\sum_{i=1}^{L}\left|u_{i}\right|_{h(x)}$.

We state below lemmas of Brezis-Lieb type. The proof of the two first results follows the same arguments explored at [26], while the proof of the latter can be found at [8].

Proposition 2.5 (Brezis-Lieb lemma, first version) Let $\left(u_{n}\right)$ be a bounded sequence in $L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$ such that $u_{n}(x) \rightarrow u(x)$ for a.e. $x \in \mathbb{R}^{N}$. Then, $u \in L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$ and

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{N}}| | u_{n}\right|^{h(x)}-\left|u_{n}-u\right|^{h(x)}-|u|^{h(x)} \mid d x=o_{n}(1) . \tag{2.2}
\end{equation*}
$$

Proposition 2.6 (Brezis-Lieb lemma, second version) Let $\left(u_{n}\right)$ be a bounded sequence in $L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$ with $h_{-}>1$ and $u_{n}(x) \rightarrow u(x)$ for a.e. $x \in \mathbb{R}^{N}$. Then

$$
u_{n} \rightharpoonup u \quad \text { in } L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right) .
$$

Proposition 2.7 (Brezis-Lieb lemma, third version) Let $\left(u_{n}\right)$ be a bounded sequence in $L^{h(x)}\left(\mathbb{R}^{N}, \mathbb{R}^{L}\right)$ with $h_{-}>1$ and $u_{n}(x) \rightarrow u(x)$ for a.e. $x \in \mathbb{R}^{N}$. Then

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{N}}| | u_{n}\right|^{h(x)-2} u_{n}-\left|u_{n}-u\right|^{h(x)-2}\left(u_{n}-u\right)-\left.|u|^{h(x)-2} u\right|^{h^{\prime}(x)} d x=o_{n}(1), \tag{2.3}
\end{equation*}
$$

To finish this section, we notice that for any open subset $\Omega \subset \mathbb{R}^{N}$, we can define in the same way the spaces $L^{h(x)}(\Omega)$ and $W^{1, h(x)}(\Omega)$. Moreover, all the above propositions have analogous versions for these spaces and, besides, we have the following embedding Theorem of Sobolev's type.

Proposition 2.8 ([21, Theorems 1.1, 1.3]) Let $\Omega \subset \mathbb{R}^{N}$ an open domain with the cone property, $h: \bar{\Omega} \rightarrow \mathbb{R}$ satisfying $1<h_{-} \leq h_{+}<N$ and $m \in L_{+}^{\infty}(\Omega)$.
(i) If h is Lipschitz continuous and $h \leq m \leq h^{*}$, the embedding $W^{1, h(x)}(\Omega) \hookrightarrow L^{m(x)}(\Omega)$ is continuous;
(ii) If Ω is bounded, h is continuous and $m \ll h^{*}$, the embedding $W^{1, h(x)}(\Omega) \hookrightarrow L^{m(x)}(\Omega)$ is compact.

3 An auxiliary problem

In this section, we work with an auxiliary problem adapting the ideas explored in del Pino and Felmer [14] (see also [3]).

We start noting that the energy functional $I_{\lambda}: E_{\lambda} \rightarrow \mathbb{R}$ associated with $\left(P_{\lambda}\right)$ is given by

$$
I_{\lambda}(u)=\int_{\mathbb{R}^{N}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+(\lambda V(x)+Z(x))|u|^{p(x)}\right)-\int_{\mathbb{R}^{N}} F(x, u),
$$

where $E_{\lambda}=\left(E,\|\cdot\|_{\lambda}\right)$ with

$$
E=\left\{u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right) ; \int_{\mathbb{R}^{N}} V(x)|u|^{p(x)}<\infty\right\},
$$

and

$$
\|u\|_{\lambda}=\inf \left\{\sigma>0 ; \varrho_{\lambda}\left(\frac{u}{\sigma}\right) \leq 1\right\},
$$

being

$$
\varrho_{\lambda}(u)=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p(x)}+(\lambda V(x)+Z(x))|u|^{p(x)}\right) .
$$

Thus, $E_{\lambda} \hookrightarrow W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ continuously for $\lambda \geq 1$ and E_{λ} is compactly embedded in $L_{\text {loc }}^{h(x)}\left(\mathbb{R}^{N}\right)$, for all $1 \leq h \ll p^{*}$. In addition, we can show that E_{λ} is a reflexive space. Also, being $\mathcal{O} \subset \mathbb{R}^{N}$ an open set, from the relation

$$
\begin{equation*}
\varrho_{\lambda, \mathcal{O}}(u)=\int_{\mathcal{O}}\left(|\nabla u|^{p(x)}+(\lambda V(x)+Z(x))|u|^{p(x)}\right) \geq M \int_{\mathcal{O}}|u|^{p(x)}=M \varrho_{p(x), \mathcal{O}}(u), \tag{3.1}
\end{equation*}
$$

for all $u \in E_{\lambda}$ with $\lambda \geq 1$, writing $M=(1-\delta)^{-1} v$, for some $0<\delta<1$ and $v>0$, we derive

$$
\begin{equation*}
\varrho_{\lambda, \mathcal{O}}(u)-v \varrho_{p(x), \mathcal{O}}(u) \geq \delta \varrho_{\lambda, \mathcal{O}}(u), \quad \forall u \in E_{\lambda}, \lambda \geq 1 . \tag{3.2}
\end{equation*}
$$

Remark 3.1 From the above commentaries, in this work the parameter λ will be always bigger than or equal to 1 .

We recall that for any $\epsilon>0$, the hypotheses $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{5}\right)$ yield

$$
\begin{equation*}
f(x, t) \leq \epsilon|t|^{p(x)-1}+C_{\epsilon}|t|^{q(x)-1}, \quad \forall x \in \mathbb{R}^{N}, t \in \mathbb{R}, \tag{3.3}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
F(x, t) \leq \epsilon|t|^{p(x)}+C_{\epsilon}|t|^{q(x)}, \quad \forall x \in \mathbb{R}^{N}, t \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

where C_{ϵ} depends on ϵ. Moreover, for each $v>0$ fixed, the assumptions $\left(f_{2}\right)$ and $\left(f_{3}\right)$ allow us considering the function $a: \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
a(x)=\min \left\{a>0 ; \frac{f(x, a)}{a^{p(x)-1}}=v\right\} . \tag{3.5}
\end{equation*}
$$

From $\left(f_{2}\right)$, it follows that

$$
\begin{equation*}
0<a_{-}=\inf _{x \in \mathbb{R}^{N}} a(x) \tag{3.6}
\end{equation*}
$$

Using the function $a(x)$, we set the function $\tilde{f}: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\tilde{f}(x, t)=\left\{\begin{array}{c}
f(x, t), t \leq a(x) \\
v t^{p(x)-1}, t \geq a(x)
\end{array}\right.
$$

which fulfills the inequality

$$
\begin{equation*}
\tilde{f}(x, t) \leq \nu|t|^{p(x)-1}, \quad \forall x \in \mathbb{R}^{N}, t \in \mathbb{R} . \tag{3.7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\tilde{f}(x, t) t \leq \nu|t|^{p(x)}, \quad \forall x \in \mathbb{R}^{N}, t \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{F}(x, t) \leq \frac{v}{p(x)}|t|^{p(x)}, \quad \forall x \in \mathbb{R}^{N}, t \in \mathbb{R}, \tag{3.9}
\end{equation*}
$$

where $\tilde{F}(x, t)=\int_{0}^{t} \tilde{f}(x, s) \mathrm{d} s$.

Now, once that $\Omega=\operatorname{int} V^{-1}(0)$ is formed by k connected components $\Omega_{1}, \ldots, \Omega_{k}$ with $\operatorname{dist}\left(\Omega_{i}, \Omega_{j}\right)>0, i \neq j$, then for each $j \in\{1, \ldots, k\}$, we are able to fix a smooth bounded domain Ω_{j}^{\prime} such that

$$
\begin{equation*}
\overline{\Omega_{j}} \subset \Omega_{j}^{\prime} \quad \text { and } \overline{\Omega_{i}^{\prime}} \cap \overline{\Omega_{j}^{\prime}}=\emptyset, \quad \text { for } i \neq j \tag{3.10}
\end{equation*}
$$

From now on, we fix a non-empty subset $\Upsilon \subset\{1, \ldots, k\}$ and

$$
\Omega_{\Upsilon}=\bigcup_{j \in \Upsilon} \Omega_{j}, \Omega_{\Upsilon}^{\prime}=\bigcup_{j \in \Upsilon} \Omega_{j}^{\prime}, \chi_{\Upsilon}= \begin{cases}1, & \text { if } x \in \Omega_{\Upsilon}^{\prime} \\ 0, & \text { if } x \notin \Omega_{\Upsilon}^{\prime} .\end{cases}
$$

Using the above notations, we set the functions

$$
g(x, t)=\chi_{\Upsilon}(x) f(x, t)+\left(1-\chi_{\Upsilon}(x)\right) \tilde{f}(x, t),(x, t) \in \mathbb{R}^{N} \times \mathbb{R}
$$

and

$$
G(x, t)=\int_{0}^{t} g(x, s) \mathrm{d} s,(x, t) \in \mathbb{R}^{N} \times \mathbb{R},
$$

and the auxiliary problem

$$
\left(A_{\lambda}\right)\left\{\begin{array}{l}
-\Delta_{p(x)} u+(\lambda V(x)+Z(x))|u|^{p(x)-2} u=g(x, u), \text { in } \mathbb{R}^{N}, \\
u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

The problem $\left(A_{\lambda}\right)$ is related to $\left(P_{\lambda}\right)$ in the sense that, if u_{λ} is a solution for $\left(A_{\lambda}\right)$ verifying

$$
u_{\lambda}(x) \leq a(x), \forall x \in \mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime},
$$

then it is a solution for $\left(P_{\lambda}\right)$.
In comparison with $\left(P_{\lambda}\right)$, problem $\left(A_{\lambda}\right)$ has the advantage that the energy functional associated with $\left(A_{\lambda}\right)$, namely, $\phi_{\lambda}: E_{\lambda} \rightarrow \mathbb{R}$ given by

$$
\phi_{\lambda}(u)=\int_{\mathbb{R}^{N}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+(\lambda V(x)+Z(x))|u|^{p(x)}\right)-\int_{\mathbb{R}^{N}} G(x, u),
$$

satisfies the $(P S)$ condition, whereas I_{λ} does not necessarily satisfy this condition. In this way, the mountain pass level (see Theorem 3.6) is a critical value for ϕ_{λ}.

Proposition $3.2 \phi_{\lambda}$ satisfies the mountain pass geometry.
Proof From (3.4) and (3.9),

$$
\phi_{\lambda}(u) \geq \frac{1}{p_{+}} \varrho_{\lambda}(u)-\epsilon \int_{\mathbb{R}^{N}}|u|^{p(x)}-C_{\epsilon} \int_{\mathbb{R}^{N}}|u|^{q(x)}-\frac{v}{p_{-}} \int_{\mathbb{R}^{N}}|u|^{p(x)},
$$

for $\epsilon>0$ and $C_{\epsilon}>0$ be a constant depending on ϵ. By (3.1), fixing $\epsilon<\frac{M}{p_{+}}$and $v<$ $p_{-} M\left(\frac{1}{p_{+}}-\frac{\epsilon}{M}\right)$ and assuming $\|u\|_{\lambda}<\min \left\{1,1 / C_{q}\right\}$, where $|v|_{q(x)} \leq C_{q}\|v\|_{\lambda}, \forall v \in E_{\lambda}$, we derive from Proposition 2.1

$$
\phi_{\lambda}(u) \geq \alpha\|u\|_{\lambda}^{p_{+}}-C\|u\|_{\lambda}^{q_{-}},
$$

where $\alpha=\left(\frac{1}{p_{+}}-\frac{\epsilon}{M}\right)-\frac{v}{p_{-} M}>0$. Once $p_{+}<q_{-}$, the first part of the mountain pass geometry is satisfied. Now, fixing $v \in C_{0}^{\infty}\left(\Omega_{\Upsilon}\right)$, we have for $t \geq 0$

$$
\left.\phi_{\lambda}(t v)=\int_{\mathbb{R}^{N}} \frac{t^{p(x)}}{p(x)}\left(|\nabla v|^{p(x)}+Z(x)\right)|v|^{p(x)}\right)-\int_{\mathbb{R}^{N}} F(x, t v) .
$$

If $t>1$, by $\left(f_{3}\right)$,

$$
\left.\phi_{\lambda}(t v) \leq \frac{t^{p^{+}}}{p_{-}} \int_{\mathbb{R}^{N}}\left(|\nabla v|^{p(x)}+Z(x)\right)|v|^{p(x)}\right)-C_{1} t^{\theta} \int_{\mathbb{R}^{N}}|v|^{\theta}-C_{2},
$$

and so,

$$
\phi_{\lambda}(t v) \rightarrow-\infty \quad \text { as } \quad t \rightarrow+\infty .
$$

The last limit implies that ϕ_{λ} verifies the second geometry of the mountain pass.
Proposition 3.3 All $(P S)_{d}$ sequences for ϕ_{λ} are bounded in E_{λ}.
Proof Let $\left(u_{n}\right)$ be a $(P S)_{d}$ sequence for ϕ_{λ}. So, there is $n_{0} \in \mathbb{N}$ such that

$$
\phi_{\lambda}\left(u_{n}\right)-\frac{1}{\theta} \phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \leq d+1+\left\|u_{n}\right\|_{\lambda}, \text { for } n \geq n_{0} .
$$

On the other hand, by (3.8) and (3.9)

$$
\tilde{F}(x, t)-\frac{1}{\theta} \tilde{f}(x, t) t \leq\left(\frac{1}{p(x)}-\frac{1}{\theta}\right) \nu|t|^{p(x)}, \forall x \in \mathbb{R}^{N}, \quad t \in \mathbb{R},
$$

which together with (3.2) gives

$$
\phi_{\lambda}\left(u_{n}\right)-\frac{1}{\theta} \phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \geq\left(\frac{1}{p_{+}}-\frac{1}{\theta}\right) \delta \varrho_{\lambda}\left(u_{n}\right), \forall n \in \mathbb{N} .
$$

Hence

$$
d+1+\max \left\{\varrho_{\lambda}\left(u_{n}\right)^{1 / p_{-}}, \varrho_{\lambda}\left(u_{n}\right)^{1 / p_{+}}\right\} \geq\left(\frac{1}{p_{+}}-\frac{1}{\theta}\right) \delta \varrho_{\lambda}\left(u_{n}\right), \forall n \geq n_{0},
$$

from where it follows that $\left(u_{n}\right)$ is bounded in E_{λ}.
Proposition 3.4 If $\left(u_{n}\right)$ is a $(P S)_{d}$ sequence for ϕ_{λ}, then given $\epsilon>0$, there is $R>0$ such that

$$
\begin{equation*}
\limsup _{n} \int_{\mathbb{R}^{N} \backslash B_{R}(0)}\left(\left|\nabla u_{n}\right|^{p(x)}+(\lambda V(x)+Z(x))\left|u_{n}\right|^{p(x)}\right)<\epsilon . \tag{3.11}
\end{equation*}
$$

Hence, once that g has a subcritical growth, if $u \in E_{\lambda}$ is the weak limit of $\left(u_{n}\right)$, then
$\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} d x \rightarrow \int_{\mathbb{R}^{N}} g(x, u) u d x$ and $\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) v d x \rightarrow \int_{\mathbb{R}^{N}} g(x, u) v d x, \forall v \in E_{\lambda}$.
Proof Let $\left(u_{n}\right)$ be a $(P S)_{d}$ sequence for $\phi_{\lambda}, R>0$ large such that $\Omega_{\Upsilon}^{\prime} \subset B_{\frac{R}{2}}(0)$ and $\eta_{R} \in C^{\infty}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\eta_{R}(x)=\left\{\begin{array}{ll}
0, & x \in B_{\frac{R}{2}}(0) \\
1, & x \in \mathbb{R}^{N} \backslash B_{R}(0)
\end{array},\right.
$$

$0 \leq \eta_{R} \leq 1$ and $\left|\nabla \eta_{R}\right| \leq \frac{C}{R}$, where $C>0$ does not depend on R. This way,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p(x)}+(\lambda V(x)+Z(x))\left|u_{n}\right|^{p(x)}\right) \eta_{R} \\
& \quad=\phi_{\lambda}^{\prime}\left(u_{n}\right)\left(u_{n} \eta_{R}\right)-\int_{\mathbb{R}^{N}} u_{n}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n} \cdot \nabla \eta_{R}+\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} \tilde{f}\left(x, u_{n}\right) u_{n} \eta_{R} .
\end{aligned}
$$

Denoting

$$
I=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p(x)}+(\lambda V(x)+Z(x))\left|u_{n}\right|^{p(x)}\right) \eta_{R},
$$

it follows from (3.8),

$$
I \leq \phi_{\lambda}^{\prime}\left(u_{n}\right)\left(u_{n} \eta_{R}\right)+\frac{C}{R} \int_{\mathbb{R}^{N}}\left|u_{n}\right|\left|\nabla u_{n}\right|^{p(x)-1}+v \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p(x)} \eta_{R} .
$$

Using Hölder's inequality 2.4 and Proposition 2.3, we derive

$$
I \leq \phi_{\lambda}^{\prime}\left(u_{n}\right)\left(u_{n} \eta_{R}\right)+\frac{C}{R}\left|u_{n}\right|_{p(x)} \max \left\{\left|\nabla u_{n}\right|_{p(x)}^{p_{-}-1},\left|\nabla u_{n}\right|_{p(x)}^{p_{+}-1}\right\}+\frac{v}{M} I .
$$

Since $\left(u_{n}\right)$ and $\left(\left|\nabla u_{n}\right|\right)$ are bounded in $L^{p(x)}\left(\mathbb{R}^{N}\right)$ and $\frac{v}{M}=1-\delta$, we obtain

$$
\int_{\mathbb{R}^{N} \backslash B_{R}(0)}\left(\left|\nabla u_{n}\right|^{p(x)}+(\lambda V(x)+Z(x))\left|u_{n}\right|^{p(x)}\right) \leq o_{n}(1)+\frac{C}{R} .
$$

Therefore

$$
\limsup _{n} \int_{\substack{\mathbb{R}^{N} \backslash B_{R}(0)}}\left(\left|\nabla u_{n}\right|^{p(x)}+(\lambda V(x)+Z(x))\left|u_{n}\right|^{p(x)}\right) \leq \frac{C}{R}
$$

So, given $\epsilon>0$, choosing a $R>0$ possibly still bigger, we have that $\frac{C}{R}<\epsilon$, which proves (3.11). Now, we will show that

$$
\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} \rightarrow \int_{\mathbb{R}^{N}} g(x, u) u .
$$

Using the fact that $g(x, u) u \in L^{1}\left(\mathbb{R}^{N}\right)$ together with (3.11) and Sobolev embeddings, given $\epsilon>0$, we can choose $R>0$ such that

$$
\limsup _{n \rightarrow+\infty} \int_{\mathbb{R}^{N} \backslash B_{R}(0)}\left|g\left(x, u_{n}\right) u_{n}\right| \leq \frac{\epsilon}{4} \text { and } \int_{\mathbb{R}^{N} \backslash B_{R}(0)}|g(x, u) u| \leq \frac{\epsilon}{4} .
$$

On the other hand, since g has a subcritical growth, we have by compact embeddings

$$
\int_{B_{R}(0)} g\left(x, u_{n}\right) u_{n} \rightarrow \int_{B_{R}(0)} g(x, u) u .
$$

Combining the above information, we conclude that

$$
\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} \rightarrow \int_{\mathbb{R}^{N}} g(x, u) u .
$$

The same type of arguments works to prove that

$$
\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) v \rightarrow \int_{\mathbb{R}^{N}} g(x, u) v \quad \forall v \in E_{\lambda} .
$$

Proposition $3.5 \phi_{\lambda}$ verifies the $(P S)$ condition.
Proof Let $\left(u_{n}\right)$ be a $(P S)_{d}$ sequence for ϕ_{λ} and $u \in E_{\lambda}$ such that $u_{n} \rightharpoonup u$ in E_{λ}. Thereby, by Proposition 3.4,

$$
\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} \rightarrow \int_{\mathbb{R}^{N}} g(x, u) u \quad \text { and } \quad \int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) v \rightarrow \int_{\mathbb{R}^{N}} g(x, u) v, \forall v \in E_{\lambda} .
$$

Moreover, the weak limit also gives

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla\left(u_{n}-u\right) \rightarrow 0
$$

and

$$
\int_{\mathbb{R}^{N}}(\lambda V(x)+Z(x))|u|^{p(x)-2} u\left(u_{n}-u\right) \rightarrow 0 .
$$

Now, if

$$
P_{n}^{1}(x)=\left(\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}-|\nabla u|^{p(x)-2} \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right)
$$

and

$$
P_{n}^{2}(x)=\left(\left|u_{n}\right|^{p(x)-2} u_{n}-|u|^{p(x)-2} u\right)\left(u_{n}-u\right),
$$

we derive

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(P_{n}^{1}(x)+(\lambda V(x)+Z(x)) P_{n}^{2}(x)\right)=\phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n}+\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n}-\phi_{\lambda}^{\prime}\left(u_{n}\right) u-\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u \\
& -\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p(x)-2} \nabla u \cdot \nabla\left(u_{n}-u\right)+(\lambda V(x)+Z(x))|u|^{p(x)-2} u\left(u_{n}-u\right)\right) .
\end{aligned}
$$

Recalling that $\phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1)$ and $\phi_{\lambda}^{\prime}\left(u_{n}\right) u=o_{n}(1)$, the above limits lead to

$$
\int_{\mathbb{R}^{N}}\left(P_{n}^{1}(x)+(\lambda V(x)+Z(x)) P_{n}^{2}(x)\right) \rightarrow 0 .
$$

Now, the conclusion follows as in [8].
Theorem 3.6 The problem $\left(A_{\lambda}\right)$ has a (nonnegative) solution, for all $\lambda \geq 1$.
Proof The proof is an immediate consequence of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [10].

4 The $(P S)_{\infty}$ condition

A sequence $\left(u_{n}\right) \subset W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ is called a $(P S)_{\infty}$ sequence for the family $\left(\phi_{\lambda}\right)_{\lambda \geq 1}$, if there is a sequence $\left(\lambda_{n}\right) \subset[1, \infty)$ with $\lambda_{n} \rightarrow \infty$, as $n \rightarrow \infty$, verifying

$$
\phi_{\lambda_{n}}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left\|\phi_{\lambda_{n}}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Proposition 4.1 Let $\left(u_{n}\right) \subset W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ be a $(P S)_{\infty}$ sequence for $\left(\phi_{\lambda}\right)_{\lambda>1}$. Then, up to a subsequence, there exists $u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ such that $u_{n} \rightharpoonup u$ in $W^{1, p(x)}\left(\mathbb{R}^{\bar{N}}\right)$. Furthermore,
(i) $\varrho_{\lambda_{n}}\left(u_{n}-u\right) \rightarrow 0$ and, consequently, $u_{n} \rightarrow u$ in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$;
(ii) $u=0$ in $\mathbb{R}^{N} \backslash \Omega_{\Upsilon}, u \geq 0$ and $u_{\Omega_{j}}, j \in \Upsilon$, is a solution for

$$
\left(P_{j}\right)\left\{\begin{array}{l}
-\Delta_{p(x)} u+Z(x)|u|^{p(x)-2} u=f(x, u), \text { in } \Omega_{j} \\
u \in W_{0}^{1, p(x)}\left(\Omega_{j}\right)
\end{array}\right.
$$

(iii) $\int_{\mathbb{R}^{N}} \lambda_{n} V(x)\left|u_{n}\right|^{p(x)} \rightarrow 0$;
(iv) $\varrho_{\lambda_{n}, \Omega_{j}^{\prime}}\left(u_{n}\right) \rightarrow \int_{\Omega_{j}}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right)$, for $j \in \Upsilon$;
(v) $\varrho_{\lambda_{n}, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}}\left(u_{n}\right) \rightarrow 0$;
(vi) $\phi_{\lambda_{n}}\left(u_{n}\right) \rightarrow \int_{\Omega_{\Upsilon}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right)-\int_{\Omega_{\Upsilon}} F(x, u)$.

Proof Using the same reasoning as in the proof of Proposition 3.3, we obtain that $\left(\varrho_{\lambda_{n}}\left(u_{n}\right)\right)$ is bounded in \mathbb{R}. Then $\left(\left\|u_{n}\right\|_{\lambda_{n}}\right)$ is bounded in \mathbb{R} and $\left(u_{n}\right)$ is bounded in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$. So, up to a subsequence, there exists $u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ such that

$$
u_{n} \rightharpoonup u \quad \text { in } W^{1, p(x)}\left(\mathbb{R}^{N}\right) \text { and } u_{n}(x) \rightarrow u(x) \text { for a.e. } x \in \mathbb{R}^{N} .
$$

Now, for each $m \in \mathbb{N}$, we define $C_{m}=\left\{x \in \mathbb{R}^{N} ; V(x) \geq \frac{1}{m}\right\}$. Without loss of generality, we can assume $\lambda_{n}<2\left(\lambda_{n}-1\right), \forall n \in \mathbb{N}$. Thus

$$
\int_{C_{m}}\left|u_{n}\right|^{p(x)} \leq \frac{2 m}{\lambda_{n}} \int_{C_{m}}\left(\lambda_{n} V(x)+Z(x)\right)\left|u_{n}\right|^{p(x)} \leq \frac{2 m}{\lambda_{n}} \varrho_{\lambda_{n}}\left(u_{n}\right) \leq \frac{C}{\lambda_{n}} .
$$

By Fatou's lemma, we derive

$$
\int_{C_{m}}|u|^{p(x)}=0
$$

which implies that $u=0$ in C_{m} and, consequently, $u=0$ in $\mathbb{R}^{N} \backslash \bar{\Omega}$. From this, we are able to prove $(i)-(v i)$.
(i) Since $u=0$ in $\mathbb{R}^{N} \backslash \bar{\Omega}$, repeating the argument explored in Proposition 3.5 we get

$$
\int_{\mathbb{R}^{N}}\left(P_{n}^{1}(x)+\left(\lambda_{n} V(x)+Z(x)\right) P_{n}^{2}(x)\right) \rightarrow 0,
$$

where

$$
P_{n}^{1}(x)=\left(\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}-|\nabla u|^{p(x)-2} \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right)
$$

and

$$
P_{n}^{2}(x)=\left(\left|u_{n}\right|^{p(x)-2} u_{n}-|u|^{p(x)-2} u\right)\left(u_{n}-u\right) .
$$

Therefore, $\varrho_{\lambda_{n}}\left(u_{n}-u\right) \rightarrow 0$, which implies $u_{n} \rightarrow u$ in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$.
(ii) Since $u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ and $u=0$ in $\mathbb{R}^{N} \backslash \bar{\Omega}$, we have $u \in W_{0}^{1, p(x)}(\Omega)$ or, equivalently, $u_{\Omega_{j}} \in W_{0}^{1, p(x)}\left(\Omega_{j}\right)$, for $j=1, \ldots, k$. Moreover, the limit $u_{n} \rightarrow u$ in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ combined with $\phi_{\lambda_{n}}^{\prime}\left(u_{n}\right) \varphi \rightarrow 0$ for $\varphi \in C_{0}^{\infty}\left(\Omega_{j}\right)$ implies that

$$
\begin{equation*}
\int_{\Omega_{j}}\left(|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi+Z(x)|u|^{p(x)-2} u \varphi\right)-\int_{\Omega_{j}} g(x, u) \varphi=0, \tag{4.1}
\end{equation*}
$$

showing that $u_{\Omega_{j}}$ is a solution for

$$
\left\{\begin{array}{l}
-\Delta_{p(x)} u+Z(x)|u|^{p(x)-2} u=g(x, u), \text { in } \Omega_{j}, \\
u \in W_{0}^{1, p(x)}\left(\Omega_{j}\right) .
\end{array}\right.
$$

This way, if $j \in \Upsilon$, then $u_{\left.\right|_{\Omega_{j}}}$ satisfies $\left(P_{j}\right)$. On the other hand, if $j \notin \Upsilon$, we must have

$$
\int_{\Omega_{j}}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right)-\int_{\Omega_{j}} \tilde{f}(x, u) u=0 .
$$

The above equality combined with (3.8) and (3.2) gives

$$
0 \geq \varrho_{\lambda, \Omega_{j}}(u)-v \varrho_{p(x), \Omega_{j}}(u) \geq \delta \varrho_{\lambda, \Omega_{j}}(u) \geq 0,
$$

from where it follows $u_{\mid \Omega_{j}}=0$. This proves $u=0$ outside Ω_{Υ} and $u \geq 0$ in \mathbb{R}^{N}.
(iii) It follows from (i), since

$$
\int_{\mathbb{R}^{N}} \lambda_{n} V(x)\left|u_{n}\right|^{p(x)}=\int_{\mathbb{R}^{N}} \lambda_{n} V(x)\left|u_{n}-u\right|^{p(x)} \leq 2 \varrho_{\lambda_{n}}\left(u_{n}-u\right) .
$$

(iv) Let $j \in \Upsilon$. From (i),

$$
\varrho_{p(x), \Omega_{j}^{\prime}}\left(u_{n}-u\right), \varrho_{p(x), \Omega_{j}^{\prime}}\left(\nabla u_{n}-\nabla u\right) \rightarrow 0 .
$$

Then by Proposition 2.5,

$$
\int_{\Omega_{j}^{\prime}}\left(\left|\nabla u_{n}\right|^{p(x)}-|\nabla u|^{p(x)}\right) \rightarrow 0 \text { and } \int_{\Omega_{j}^{\prime}} Z(x)\left(\left|u_{n}\right|^{p(x)}-|u|^{p(x)}\right) \rightarrow 0 .
$$

From (iii),

$$
\int_{\Omega_{j}^{\prime}} \lambda_{n} V(x)\left(\left|u_{n}\right|^{p(x)}-|u|^{p(x)}\right)=\int_{\Omega_{j}^{\prime} \overline{\Omega_{j}}} \lambda_{n} V(x)\left|u_{n}\right|^{p(x)} \rightarrow 0 .
$$

This way

$$
\varrho_{\lambda_{n}, \Omega_{j}^{\prime}}\left(u_{n}\right)-\varrho_{\lambda_{n}, \Omega_{j}^{\prime}}(u) \rightarrow 0 .
$$

Once $u=0$ in $\Omega_{j}^{\prime} \backslash \Omega_{j}$, we get

$$
\varrho_{\lambda_{n}, \Omega_{j}^{\prime}}\left(u_{n}\right) \rightarrow \int_{\Omega_{j}}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right) .
$$

(v) By (i), $\varrho_{\lambda_{n}}\left(u_{n}-u\right) \rightarrow 0$, and so,

$$
\varrho_{\lambda_{n}, \mathbb{R}^{N} \backslash \Omega_{\curlyvee}}\left(u_{n}\right) \rightarrow 0 .
$$

(vi) We can write the functional $\phi_{\lambda_{n}}$ in the following way

$$
\begin{aligned}
\phi_{\lambda_{n}}\left(u_{n}\right)= & \sum_{j \in \Upsilon_{\Omega_{j}^{\prime}}} \int \frac{1}{p(x)}\left(\left|\nabla u_{n}\right|^{p(x)}+\left(\lambda_{n} V(x)+Z(x)\right)\left|u_{n}\right|^{p(x)}\right) \\
& +\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} \frac{1}{p(x)}\left(\left|\nabla u_{n}\right|^{p(x)}+\left(\lambda_{n} V(x)+Z(x)\right)\left|u_{n}\right|^{p(x)}\right)-\int_{\mathbb{R}^{N}} G\left(x, u_{n}\right) .
\end{aligned}
$$

From (i) - (v),

$$
\begin{aligned}
& \int_{\Omega_{j}^{\prime}} \frac{1}{p(x)}\left(\left|\nabla u_{n}\right|^{p(x)}+\left(\lambda_{n} V(x)+Z(x)\right)\left|u_{n}\right|^{p(x)}\right) \\
& \rightarrow \int_{\Omega_{j}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right), \\
& \int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} \frac{1}{p(x)}\left(\left|\nabla u_{n}\right|^{p(x)}+\left(\lambda_{n} V(x)+Z(x)\right)\left|u_{n}\right|^{p(x)}\right) \rightarrow 0 .
\end{aligned}
$$

and

$$
\int_{\mathbb{R}^{N}} G\left(x, u_{n}\right) \rightarrow \int_{\Omega_{\Upsilon}} F(x, u) .
$$

Therefore

$$
\phi_{\lambda_{n}}\left(u_{n}\right) \rightarrow \int_{\Omega_{\Upsilon}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right)-\int_{\Omega_{\Upsilon}} F(x, u) .
$$

5 The boundedness of the $\left(A_{\lambda}\right)$ solutions

In this section, we study the boundedness outside $\Omega_{\Upsilon}^{\prime}$ for some solutions of $\left(A_{\lambda}\right)$. To this end, we adapt for our problem arguments found in [18] and [25].

Proposition 5.1 Let $\left(u_{\lambda}\right)$ be a family of solutions for $\left(A_{\lambda}\right)$ such that $u_{\lambda} \rightarrow 0$ in $W^{1, p(x)}\left(\mathbb{R}^{N} \backslash\right.$ Ω_{Υ}, as $\lambda \rightarrow \infty$. Then, there exists $\lambda^{*}>0$ with the following property:

$$
\left|u_{\lambda}\right|_{\infty, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} \leq a_{-}, \forall \lambda \geq \lambda^{*} .
$$

Hence, u_{λ} is a solution for $\left(P_{\lambda}\right)$ for $\lambda \geq \lambda^{*}$.
Before to prove the above proposition, we need to show some technical lemmas.

Lemma 5.2 There exist $x_{1}, \ldots, x_{l} \in \partial \Omega_{\Upsilon}^{\prime}$ and corresponding $\delta_{x_{1}}, \ldots, \delta_{x_{l}}>0$ such that

$$
\partial \Omega_{\Upsilon}^{\prime} \subset \mathcal{N}\left(\partial \Omega_{\Upsilon}^{\prime}\right):=\bigcup_{i=1}^{l} B_{\frac{\delta_{x_{i}}}{2}}\left(x_{i}\right)
$$

Moreover,

$$
\begin{equation*}
q_{+}^{x_{i}} \leq\left(p_{-}^{x_{i}}\right)^{*}, \tag{5.1}
\end{equation*}
$$

where

$$
q_{+}^{x_{i}}=\sup _{B_{\delta_{x_{i}}}\left(x_{i}\right)} q, p_{-}^{x_{i}}=\inf _{B_{\delta_{x_{i}}}\left(x_{i}\right)} p \text { and }\left(p_{-}^{x_{i}}\right)^{*}=\frac{N p_{-}^{x_{i}}}{N-p_{-}^{x_{i}}} .
$$

Proof From (3.10), $\overline{\Omega_{\Upsilon}} \subset \Omega_{\Upsilon}^{\prime}$. So, there is $\delta>0$ such that

$$
\overline{B_{\delta}(x)} \subset \mathbb{R}^{N} \backslash \overline{\Omega_{\Upsilon}}, \forall x \in \partial \Omega_{\Upsilon}^{\prime}
$$

Once $q \ll p^{*}$, there exists $\epsilon>0$ such that $\epsilon \leq p^{*}(y)-q(y)$, for all $y \in \mathbb{R}^{N}$. Then, by continuity, for each $x \in \partial \Omega_{\Upsilon}^{\prime}$, we can choose a sufficiently small $0<\delta_{x} \leq \delta$ such that

$$
q_{+}^{x} \leq\left(p_{-}^{x}\right)^{*},
$$

where

$$
q_{+}^{x}=\sup _{B_{\delta_{x}}(x)} q, p_{-}^{x}=\inf _{B_{\delta_{x}}(x)} p \text { and }\left(p_{-}^{x}\right)^{*}=\frac{N p_{-}^{x}}{N-p_{-}^{x}}
$$

Covering $\partial \Omega_{\Upsilon}^{\prime}$ by the balls $B_{\frac{\delta_{x}}{2}}(x), x \in \partial \Omega_{\Upsilon}^{\prime}$, and using its compactness, there are $x_{1}, \ldots, x_{l} \in \partial \Omega_{\Upsilon}^{\prime}$ such that

$$
\partial \Omega_{\Upsilon}^{\prime} \subset \bigcup_{i=1}^{l} B_{\frac{\delta_{x_{i}}}{2}}\left(x_{i}\right)
$$

Lemma 5.3 If u_{λ} is a solution for $\left(A_{\lambda}\right)$, in each $B_{\delta_{x_{i}}}\left(x_{i}\right), i=1, \ldots, l$, given by Lemma 5.2, it is fulfilled

$$
\int_{A_{k, \bar{\delta}, x_{i}}}\left|\nabla u_{\lambda}\right|^{p_{-}^{x_{i}}} \leq C\left(\left(k^{q_{+}}+2\right)\left|A_{k, \widetilde{\delta}, x_{i}}\right|+(\widetilde{\delta}-\bar{\delta})^{-\left(p_{-}^{x_{i}}\right)^{*}} \int_{A_{k, \widetilde{\delta}, x_{i}}}\left(u_{\lambda}-k\right)^{\left.\left(p_{-}^{x_{i}}\right)^{*}\right), ~}\right.
$$

where $0<\bar{\delta}<\tilde{\delta}<\delta_{x_{i}}, k \geq \frac{a_{-}}{4}, C=C\left(p_{-}, p_{+}, q_{-}, q_{+}, v, \delta_{x_{i}}\right)>0$ is a constant independent of k, and for any $R>0$, we denote by $A_{k, R, x_{i}}$ the set

$$
A_{k, R, x_{i}}=B_{R}\left(x_{i}\right) \cap\left\{x \in \mathbb{R}^{N} ; u_{\lambda}(x)>k\right\} .
$$

Proof We choose arbitrarily $0<\bar{\delta}<\widetilde{\delta}<\delta_{x_{i}}$ and $\xi \in C^{\infty}\left(\mathbb{R}^{N}\right)$ with

$$
0 \leq \xi \leq 1, \operatorname{supp} \xi \subset B_{\widetilde{\delta}}\left(x_{i}\right), \xi=1 \text { in } B_{\bar{\delta}}\left(x_{i}\right) \text { and }|\nabla \xi| \leq \frac{2}{\widetilde{\delta}-\bar{\delta}}
$$

For $k \geq \frac{a_{-}}{4}$, we define $\eta=\xi^{p+}\left(u_{\lambda}-k\right)^{+}$. We notice that

$$
\nabla \eta=p_{+} \xi^{p_{+}-1}\left(u_{\lambda}-k\right) \nabla \xi+\xi^{p_{+}} \nabla u_{\lambda}
$$

on the set $\left\{u_{\lambda}>k\right\}$. Then, writing $u_{\lambda}=u$ and taking η as a test function, we obtain

$$
\begin{aligned}
& p_{+} \int_{A_{k, \tilde{\gamma}, x_{i}}} \xi^{p_{+}-1}(u-k)|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \xi+\int_{A_{k, \tilde{\delta}, x_{i}}} \xi^{p+}|\nabla u|^{p(x)} \\
& +\int_{A_{k, \tilde{\gamma}, x_{i}}}(\lambda V(x)+Z(x)) u^{p(x)-1} \xi^{p+}(u-k)=\int_{A_{k, \widetilde{\delta}, x_{i}}} g(x, u) \xi^{p+}(u-k) .
\end{aligned}
$$

If we set

$$
J=\int_{A_{k, \widetilde{\delta}, x_{i}}} \xi^{p+|\nabla u|^{p(x)},}
$$

using that $v \leq \lambda V(x)+Z(x), \forall x \in \mathbb{R}^{N}$, we get

$$
\begin{align*}
J \leq & p_{+} \int_{A_{k, \delta, x_{i}}} \xi^{p_{+}-1}(u-k)|\nabla u|^{p(x)-1}|\nabla \xi| \\
& -\int_{A_{k, \widetilde{\delta}, x_{i}}} v u^{p(x)-1} \xi^{p+}(u-k)+\int_{A_{k, \widetilde{\delta}, x_{i}}} g(x, u) \xi^{p+}(u-k) . \tag{5.2}
\end{align*}
$$

From (5.2), (3.3) and (3.7),

$$
\begin{aligned}
J \leq & p_{+} \int_{A_{k, \widetilde{\delta}, x_{i}}} \xi^{p_{+}-1}(u-k)|\nabla u|^{p(x)-1}|\nabla \xi|-\int_{A_{k, \widetilde{\delta}, x_{i}}} v u^{p(x)-1} \xi^{p_{+}}(u-k) \\
& +\int_{A_{k, \widetilde{\delta}, x_{i}}}\left(v u^{p(x)-1}+C_{v} u^{q(x)-1}\right) \xi^{p_{+}}(u-k),
\end{aligned}
$$

from where it follows

$$
J \leq p_{+} \int_{A_{k, \widetilde{\delta}, x_{i}}} \xi^{p_{+}-1}(u-k)|\nabla u|^{p(x)-1}|\nabla \xi|+C_{v} \int_{A_{k}, \widetilde{\delta}, x_{i}} u^{q(x)-1}(u-k) .
$$

Using Young's inequality, we obtain, for $\chi \in(0,1)$,

$$
\begin{aligned}
J \leq & \frac{p_{+}\left(p_{+}-1\right)}{p_{-}} \chi^{\frac{p_{-}}{p_{+}-1}} J+\frac{2^{p_{+}} p_{+}}{p_{-}} \chi^{-p_{+}} \int_{A_{k, \widetilde{\delta}, x_{i}}}\left(\frac{u-k}{\widetilde{\delta}-\bar{\delta}}\right)^{p(x)} \\
& +\frac{C_{\nu}\left(q_{+}-1\right)}{q_{-}} \int_{A_{k, \widetilde{\delta}, x_{i}}} u^{q(x)}+\frac{C_{v}\left(1+\delta_{x_{i}}^{q_{+}}\right)}{q_{-}} \int_{A_{k, \widetilde{\delta}, x_{i}}}\left(\frac{u-k}{\widetilde{\delta}-\bar{\delta}}\right)^{q(x)} .
\end{aligned}
$$

Writing

$$
Q=\int_{A_{k, \widetilde{\delta}, x_{i}}}\left(\frac{u-k}{\tilde{\delta}-\bar{\delta}}\right)^{\left(p_{-}^{x_{i}}\right)^{*}}
$$

for $\chi \approx 0^{+}$fixed, due to (5.1), we deduce

$$
\begin{aligned}
J \leq & \frac{1}{2} J+\frac{2^{p_{+}} p_{+}}{p_{-}} \chi^{-p_{+}}\left(\left|A_{k, \widetilde{\delta}, x_{i}}\right|+Q\right)+\frac{C_{\nu} 2^{q_{+}}\left(q_{+}-1\right)\left(1+\delta_{x_{i}}^{q_{+}}\right)}{q_{-}}\left(\left|A_{k, \widetilde{\delta}, x_{i}}\right|+Q\right) \\
& +\frac{C_{\nu} 2^{q_{+}}\left(q_{+}-1\right)\left(1+k^{q_{+}}\right)}{q_{-}}\left|A_{k, \widetilde{\delta}, x_{i}}\right|+\frac{C_{\nu}\left(1+\delta_{x_{i}}^{q_{+}}\right)}{q_{-}}\left(\left|A_{k, \widetilde{\delta}, x_{i}}\right|+Q\right) .
\end{aligned}
$$

Therefore

$$
\int_{A_{k, \bar{\delta}, x_{i}}}|\nabla u|^{p(x)} \leq J \leq C\left[\left(k^{q_{+}}+1\right)\left|A_{k, \widetilde{\delta}, x_{i}}\right|+Q\right],
$$

for a positive constant $C=C\left(p_{-}, p_{+}, q_{-}, q_{+}, v, \delta_{x_{i}}\right)$ which does not depend on k. Since

$$
|\nabla u|^{p_{-}^{x_{i}}}-1 \leq|\nabla u|^{p(x)}, \forall x \in B_{\delta_{x_{i}}}\left(x_{i}\right),
$$

we obtain

$$
\begin{aligned}
\int_{A_{k, \bar{\delta}, x_{i}}}|\nabla u|^{p_{-}^{x_{i}}} & \leq C\left[\left(k^{q_{+}}+1\right)\left|A_{k, \widetilde{\delta}, x_{i}}\right|+Q\right]+\left|A_{k, \widetilde{\delta}, x_{i}}\right| \\
& \leq C\left(\left(k^{q_{+}}+2\right)\left|A_{k, \widetilde{\delta}, x_{i}}\right|+(\widetilde{\delta}-\bar{\delta})^{-\left(p_{-}^{x_{i}}\right)^{*}} \int_{A_{k, \widetilde{\delta}, x_{i}}}(u-k)^{\left(p_{-}^{x_{i}}\right)^{*}}\right),
\end{aligned}
$$

for a positive constant $C=C\left(p_{-}, p_{+}, q_{-}, q_{+}, v, \delta_{x_{i}}\right)$ which does not depend on k.
The next lemma can be found at ([27, Lemma 4.7]).
Lemma 5.4 Let $\left(J_{n}\right)$ be a sequence of nonnegative numbers satisfying

$$
J_{n+1} \leq C B^{n} J_{n}^{1+\eta}, n=0,1,2, \ldots,
$$

where $C, \eta>0$ and $B>1$. If

$$
J_{0} \leq C^{-\frac{1}{\eta}} B^{-\frac{1}{\eta^{2}}},
$$

then $J_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Lemma 5.5 Let $\left(u_{\lambda}\right)$ be a family of solutions for $\left(A_{\lambda}\right)$ such that $u_{\lambda} \rightarrow 0$ in $W^{1, p(x)}\left(\mathbb{R}^{N} \backslash\right.$ $\left.\Omega_{\Upsilon}\right)$, as $\lambda \rightarrow \infty$. Then, there exists $\lambda^{*}>0$ with the following property:

$$
\left|u_{\lambda}\right|_{\infty, \mathcal{N}\left(\partial \Omega_{\Upsilon}^{\prime}\right)} \leq a_{-}, \forall \lambda \geq \lambda^{*} .
$$

Proof It is enough to prove the inequality in each ball $B_{\frac{x_{x_{i}}}{2}}\left(x_{i}\right), i=1, \ldots, l$, given by Lemma 5.2. We set

$$
\widetilde{\delta}_{n}=\frac{\delta_{x_{i}}}{2}+\frac{\delta_{x_{i}}}{2^{n+1}}, \bar{\delta}_{n}=\frac{\widetilde{\delta}_{n}+\widetilde{\delta}_{n+1}}{2}, k_{n}=\frac{a_{-}}{2}\left(1-\frac{1}{2^{n+1}}\right), \forall n=0,1,2, \ldots
$$

Then

$$
\widetilde{\delta}_{n} \downarrow \frac{\delta_{x_{i}}}{2}, \quad \widetilde{\delta}_{n+1}<\bar{\delta}_{n}<\widetilde{\delta}_{n}, \quad k_{n} \uparrow \frac{a_{-}}{2} .
$$

From now on, we fix

$$
J_{n}(\lambda)=J_{n}=\int_{A_{k_{n}, \widetilde{\delta}_{n}, x_{i}}}\left(u_{\lambda}(x)-k_{n}\right)^{\left(p_{-}^{x_{i}}\right)^{*}}, n=0,1,2, \ldots
$$

and $\xi \in C^{1}(\mathbb{R})$ such that

$$
0 \leq \xi \leq 1, \quad \xi(t)=1, \text { for } t \leq \frac{1}{2}, \quad \text { and } \quad \xi(t)=0, \text { for } t \geq \frac{3}{4} .
$$

Setting

$$
\xi_{n}(x)=\xi\left(\frac{2^{n+1}}{\delta_{x_{i}}}\left(\left|x-x_{i}\right|-\frac{\delta_{x_{i}}}{2}\right)\right), \quad x \in \mathbb{R}^{N}, \quad n=0,1,2, \ldots,
$$

we have $\xi_{n}=1$ in $B_{\widetilde{\delta}_{n+1}}\left(x_{i}\right)$ and $\xi_{n}=0$ outside $B_{\bar{\delta}_{n}}\left(x_{i}\right)$. Writing $u_{\lambda}=u$, we get

$$
\begin{aligned}
J_{n+1} & \leq \int_{A_{k_{n+1}, \bar{\delta}_{n}, x_{i}}}\left(\left(u(x)-k_{n+1}\right) \xi_{n}(x)\right)^{\left(p_{-}^{x_{i}}\right)^{*}} \\
& =\int_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\left(\left(u-k_{n+1}\right)^{+}(x) \xi_{n}(x)\right)^{\left(p_{-}^{x_{i}}\right)^{*}} \\
& \leq C\left(N, p_{-}^{x_{i}}\right)\left(\int_{B_{\delta_{x_{i}}}\left(x_{i}\right)}\left|\nabla\left(\left(u-k_{n+1}\right)^{+} \xi_{n}\right)(x)\right|^{p_{-}^{x_{i}}}\right)^{\frac{\left(p^{x_{-}}\right)^{*}}{p_{-}^{x_{i}}}} \\
& \leq C\left(N, p_{-}^{x_{i}}\right)\left(\int_{A_{k_{n+1}, \bar{\delta}_{n}, x_{i}}}|\nabla u|^{p_{-}^{x_{i}}}+\int_{A_{k_{n+1}, \bar{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{p_{-}^{x_{i}}}\left|\nabla \xi_{n}\right|^{p_{-}^{x_{-}}}\right)^{\frac{\left(p_{-}^{x_{-}}\right)^{*}}{p_{-}^{x_{i}}}} .
\end{aligned}
$$

Since

$$
\left|\nabla \xi_{n}(x)\right| \leq C\left(\delta_{x_{i}}\right) 2^{n+1}, \forall x \in \mathbb{R}^{N}
$$

writing $J_{n+1}^{\frac{p^{x_{i}}}{\left(p_{-}^{x_{-}}\right)^{*}}}=\widetilde{J}_{n+1}$, we obtain

$$
\widetilde{J}_{n+1} \leq C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}\right)\left(\int_{A_{k_{n+1}, \bar{\delta}_{n}, x_{i}}}|\nabla u|^{p_{-}^{x_{i}}}+2^{n p_{-}^{x_{i}}} \int_{A_{k_{n+1}, \bar{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{p_{-}^{x_{i}}}\right)
$$

Using Lemma 5.3,

$$
\begin{aligned}
\widetilde{J}_{n+1} \leq & C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}\right)\left(\left(k_{n+1}^{q_{+}}+2\right)\left|A_{k_{n+1}, \widetilde{\delta}_{n}, x_{i}}\right|\right. \\
& \left.+\left(\frac{2^{n+3}}{\delta_{x_{i}}}\right)^{\left(p_{-}^{x_{i}}\right)^{*}} \int_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{\left(p_{-}^{x_{i}}\right)^{*}}+2^{n p_{-}^{x_{i}}} \int_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{p_{-}^{x_{i}}}\right) \\
\leq & C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}\right)\left(\left(k_{n+1}^{q_{+}}+2\right)\left|A_{k_{n+1}, \widetilde{\delta}_{n}, x_{i}}\right|\right. \\
& +2^{n\left(p_{-}^{x_{i}}\right)^{*} \iint_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1)} p^{\left(p_{-}^{x_{i}}\right)^{*}}+2^{n p_{-}^{x_{i}}} \int_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{p_{-}^{x_{i}}}\right) .}
\end{aligned}
$$

From Young's inequality

$$
\int_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{p_{-}^{x_{i}}} \leq C\left(p_{-}^{x_{i}}\right)\left(\left|A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}\right|+\int_{A_{k_{n+1}, \tilde{\delta}_{n}, x_{i}}}\left(u-k_{n+1}\right)^{\left.\left(p_{-}^{x_{i}}\right)^{*}\right) . . . ~ . ~ . ~}\right.
$$

Thus

$$
\widetilde{J}_{n+1} \leq C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}\right)\left(\left(\left(\frac{a_{-}}{2}\right)^{q_{+}}+2+2^{n p_{-}^{x_{i}}}\right)\left|A_{k_{n+1}, \widetilde{\delta}_{n}, x_{i}}\right|+2^{n\left(p_{-}^{x_{i}}\right)^{*}} J_{n}+2^{n p_{-}^{x_{i}}} J_{n}\right) .
$$

Now, since
it follows that

$$
\left|A_{k_{n+1}, \widetilde{\delta}_{n}, x_{i}}\right| \leq\left(\frac{2^{n+3}}{a_{-}}\right)^{\left(p_{-}^{x_{i}}\right)^{*}} J_{n}
$$

and so,

$$
\widetilde{J}_{n+1} \leq C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}, a_{-}, q_{+}\right)\left(2^{n\left(p_{-}^{x_{i}}\right)^{*}} J_{n}+2^{n\left(p_{-}^{x_{i}}+\left(p_{-}^{x_{i}}\right)^{*}\right)} J_{n}+2^{n\left(p_{-}^{x_{i}}\right)^{*}} J_{n}+2^{n p_{-}^{x_{i}}} J_{n}\right) .
$$

Fixing $\alpha=\left(p_{-}^{x_{i}}+\left(p_{-}^{x_{i}}\right)^{*}\right)$, it follows that

$$
J_{n+1} \leq C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}, a_{-}, q_{+}\right)\left(2^{\alpha \frac{\left(p_{-}^{x_{i}}\right)^{*}}{p_{-}^{x_{i}}}}\right)^{n} J_{n}^{\frac{\left(p_{-}^{x_{i}}\right)^{*}}{p_{-}^{x_{i}}}},
$$

and consequently

$$
J_{n+1} \leq C B^{n} J_{n}^{1+\eta}
$$

where $C=C\left(N, p_{-}^{x_{i}}, \delta_{x_{i}}, a_{-}, q_{+}\right), B=2^{\frac{\left(p^{x_{i}}\right)^{*}}{p_{-}^{x_{i}}}}$ and $\eta=\frac{\left(p_{-}^{x_{i}}\right)^{*}}{p_{-}^{x_{i}}}-1$. Now, once that $u_{\lambda} \rightarrow 0$ in $W^{1, p(x)}\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}\right)$, as $\lambda \rightarrow \infty$, there exists $\lambda_{i}>0$ such that

$$
\int_{A \frac{a_{-}, \delta_{x_{i}}, x_{i}}{}}\left(u_{\lambda}-\frac{a_{-}}{4}\right)^{\left(p_{-}^{x_{i}}\right)^{*}}=J_{0}(\lambda) \leq C^{-\frac{1}{\eta}} B^{-\frac{1}{\eta^{2}}}, \quad \lambda \geq \lambda_{i} .
$$

From Lemma 5.4, $J_{n}(\lambda) \rightarrow 0, n \rightarrow \infty$, for all $\lambda \geq \lambda_{i}$, and so,

$$
u_{\lambda} \leq \frac{a_{-}}{2}<a_{-}, \text {in } B_{\frac{\delta_{x_{i}}}{2}} \text {, for all } \lambda \geq \lambda_{i} .
$$

Now, taking $\lambda^{*}=\max \left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$, we conclude that

$$
\left|u_{\lambda}\right|_{\infty, \mathcal{N}\left(\partial \Omega_{\Upsilon}^{\prime}\right)}<a_{-}, \forall \lambda \geq \lambda^{*} .
$$

Proof of Proposition 5.1 Fix $\lambda \geq \lambda^{*}$, where λ^{*} is given at Lemma 5.5, and define $\widetilde{u}_{\lambda}: \mathbb{R}^{N} \backslash$ $\Omega_{\Upsilon}^{\prime} \rightarrow \mathbb{R}$ given by

$$
\widetilde{u}_{\lambda}(x)=\left(u_{\lambda}-a_{-}\right)^{+}(x) .
$$

From Lemma 5.5, $\widetilde{u}_{\lambda} \in W_{0}^{1, p(x)}\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)$. Our goal is showing that $\widetilde{u}_{\lambda}=0$ in $\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}$. This implies

$$
\left|u_{\lambda}\right|_{\infty, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} \leq a_{-} .
$$

In fact, extending $\widetilde{u}_{\lambda}=0$ in $\Omega_{\Upsilon}^{\prime}$ and taking \widetilde{u}_{λ} as a test function, we obtain

$$
\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}\left|\nabla u_{\lambda}\right|^{p(x)-2} \nabla u_{\lambda} \cdot \nabla \widetilde{u}_{\lambda}+\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}(\lambda V(x)+Z(x)) u_{\lambda}^{p(x)-2} u_{\lambda} \widetilde{u}_{\lambda}=\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} g\left(x, u_{\lambda}\right) \widetilde{u}_{\lambda} .
$$

Since

$$
\begin{aligned}
\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}\left|\nabla u_{\lambda}\right|^{p(x)-2} \nabla u_{\lambda} \cdot \nabla \widetilde{u}_{\lambda} & =\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}\left|\nabla \widetilde{u}_{\lambda}\right|^{p(x)}, \\
\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}(\lambda V(x)+Z(x)) u_{\lambda}^{p(x)-2} u_{\lambda} \widetilde{u}_{\lambda} & =\int_{\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+}}(\lambda V(x)+Z(x)) u_{\lambda}^{p(x)-2}\left(\widetilde{u}_{\lambda}+a_{-}\right) \widetilde{u}_{\lambda}
\end{aligned}
$$

and

$$
\int_{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}} g\left(x, u_{\lambda}\right) \widetilde{u}_{\lambda}=\int_{\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+}} \frac{g\left(x, u_{\lambda}\right)}{u_{\lambda}}\left(\widetilde{u}_{\lambda}+a_{-}\right) \widetilde{u}_{\lambda},
$$

where

$$
\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+}=\left\{x \in \mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime} ; u_{\lambda}(x)>a_{-}\right\},
$$

we derive

$$
\int_{\substack{\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}}\left|\nabla \widetilde{u}_{\lambda}\right|^{p(x)}+\int_{\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+}}\left((\lambda V(x)+Z(x)) u_{\lambda}^{p(x)-2}-\frac{g\left(x, u_{\lambda}\right)}{u_{\lambda}}\right)\left(\widetilde{u}_{\lambda}+a_{-}\right) \widetilde{u}_{\lambda}=0,
$$

Now, by (3.7),

$$
(\lambda V(x)+Z(x)) u_{\lambda}^{p(x)-2}-\frac{g\left(x, u_{\lambda}\right)}{u_{\lambda}}>\nu u_{\lambda}^{p(x)-2}-\frac{\tilde{f}\left(x, u_{\lambda}\right)}{u_{\lambda}} \geq 0 \quad \text { in } \quad\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+} .
$$

This form, $\tilde{u}_{\lambda}=0$ in $\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right)_{+}$. Obviously, $\tilde{u}_{\lambda}=0$ at the points where $u_{\lambda} \leq a_{-}$, consequently, $\widetilde{u}_{\lambda}=0$ in $\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}$.

6 A special critical value for ϕ_{λ}

For each $j=1, \ldots, k$, consider

$$
I_{j}(u)=\int_{\Omega_{j}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+Z(x)|u|^{p(x)}\right)-\int_{\Omega_{j}} F(x, u), u \in W_{0}^{1, p(x)}\left(\Omega_{j}\right),
$$

the energy functional associated to $\left(P_{j}\right)$, and

$$
\phi_{\lambda, j}(u)=\int_{\Omega_{j}^{\prime}} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+(\lambda V(x)+Z(x))|u|^{p(x)}\right)-\int_{\Omega_{j}^{\prime}} F(x, u), u \in W^{1, p(x)}\left(\Omega_{j}^{\prime}\right),
$$

the energy functional associated to

$$
\left\{\begin{aligned}
-\Delta_{p(x)} u+(\lambda V(x)+Z(x))|u|^{p(x)-2} u & =f(x, u), & & \text { in } \Omega_{j}^{\prime} \\
\frac{\partial u}{\partial \eta} & =0, & & \text { on } \partial \Omega_{j}^{\prime} .
\end{aligned}\right.
$$

It is fulfilled that I_{j} and $\phi_{\lambda, j}$ satisfy the mountain pass geometry and let

$$
c_{j}=\inf _{\gamma \in \Gamma_{j}} \max _{t \in[0,1]} I_{j}(\gamma(t)) \text { and } c_{\lambda, j}=\inf _{\gamma \in \Gamma_{\lambda, j}} \max _{t \in[0,1]} \phi_{\lambda, j}(\gamma(t)),
$$

their respective mountain pass levels, where

$$
\Gamma_{j}=\left\{\gamma \in C\left([0,1], W_{0}^{1, p(x)}\left(\Omega_{j}\right)\right) ; \gamma(0)=0 \text { and } I_{j}(\gamma(1))<0\right\}
$$

and

$$
\Gamma_{\lambda, j}=\left\{\gamma \in C\left([0,1], W^{1, p(x)}\left(\Omega_{j}^{\prime}\right)\right) ; \gamma(0)=0 \text { and } \phi_{\lambda, j}(\gamma(1))<0\right\} .
$$

Invoking the $(P S)$ condition on I_{j} and $\phi_{\lambda, j}$, we ensure that there exist $w_{j} \in W_{0}^{1, p(x)}\left(\Omega_{j}\right)$ and $w_{\lambda, j} \in W^{1, p(x)}\left(\Omega_{j}^{\prime}\right)$ such that

$$
I_{j}\left(w_{j}\right)=c_{j} \text { and } I_{j}^{\prime}\left(w_{j}\right)=0
$$

and

$$
\phi_{\lambda, j}\left(w_{\lambda, j}\right)=c_{\lambda, j} \text { and } \phi_{\lambda, j}^{\prime}\left(w_{\lambda, j}\right)=0
$$

Lemma 6.1 There holds that
(i) $0<c_{\lambda, j} \leq c_{j}, \forall \lambda \geq 1, \forall j \in\{1, \ldots, k\}$;
(ii) $c_{\lambda, j} \rightarrow c_{j}$, as $\lambda \rightarrow \infty, \forall j \in\{1, \ldots, k\}$.

Proof (i) Once $W_{0}^{1, p(x)}\left(\Omega_{j}\right) \subset W^{1, p(x)}\left(\Omega_{j}^{\prime}\right)$ and $\phi_{\lambda, j}(\gamma(1))=I_{j}(\gamma(1))$ for $\gamma \in \Gamma_{j}$, we have $\Gamma_{j} \subset \Gamma_{\lambda, j}$. This way
$c_{\lambda, j}=\inf _{\gamma \in \Gamma_{\lambda, j}} \max _{t \in[0,1]} \phi_{\lambda, j}(\gamma(t)) \leq \inf _{\gamma \in \Gamma_{j}} \max _{t \in[0,1]} \phi_{\lambda, j}(\gamma(t))=\inf _{\gamma \in \Gamma_{j}} \max _{t \in[0,1]} I_{j}(\gamma(t))=c_{j}$.
(ii) It suffices to show that $c_{\lambda_{n}, j} \rightarrow c_{j}$, as $n \rightarrow \infty$, for all sequences $\left(\lambda_{n}\right)$ in $[1, \infty)$ with $\lambda_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Let $\left(\lambda_{n}\right)$ be such a sequence and consider an arbitrary subsequence of $\left(c_{\lambda_{n}, j}\right)$ (not relabeled). Let $w_{n} \in W^{1, p(x)}\left(\Omega_{j}^{\prime}\right)$ with

$$
\phi_{\lambda_{n}, j}\left(w_{n}\right)=c_{\lambda_{n}, j} \text { and } \phi_{\lambda_{n}, j}^{\prime}\left(w_{n}\right)=0 .
$$

By the previous item, $\left(c_{\lambda_{n}}, j\right)$ is bounded. Then, there exists $\left(w_{n_{k}}\right)$ subsequence of $\left(w_{n}\right)$ such that $\phi_{\lambda_{n_{k}}, j}\left(w_{n_{k}}\right)$ converges and $\phi_{\lambda_{n_{k}}, j}^{\prime}\left(w_{n_{k}}\right)=0$. Now, repeating the same type of arguments explored in the proof of Proposition 4.1, there is $w \in W_{0}^{1, p(x)}\left(\Omega_{j}\right) \backslash\{0\} \subset$ $W^{1, p(x)}\left(\Omega_{j}^{\prime}\right)$ such that

$$
w_{n_{k}} \rightarrow w \text { in } W^{1, p(x)}\left(\Omega_{j}^{\prime}\right), \text { as } k \rightarrow \infty .
$$

Furthermore, we also can prove that

$$
c_{\lambda_{n_{k}}, j}=\phi_{\lambda_{n_{k}}, j}\left(w_{n_{k}}\right) \rightarrow I_{j}(w)
$$

and

$$
0=\phi_{\lambda_{n_{k}}, j}^{\prime}\left(w_{n_{k}}\right) \rightarrow I_{j}^{\prime}(w) .
$$

Then, by $\left(f_{4}\right)$,

$$
\lim _{k} c_{\lambda_{n_{k}}, j} \geq c_{j}
$$

The last inequality together with item (i) implies

$$
c_{\lambda_{n_{k}}, j} \rightarrow c_{j}, \text { as } k \rightarrow \infty .
$$

This establishes the asserted result.

In the sequel, let $R>1$ verifying

$$
\begin{equation*}
0<I_{j}\left(\frac{1}{R} w_{j}\right), I_{j}\left(R w_{j}\right)<c_{j}, \text { for } j=1, \ldots, k \tag{6.1}
\end{equation*}
$$

There holds that

$$
c_{j}=\max _{t \in\left[1 / R^{2}, 1\right]} I_{j}\left(t R w_{j}\right), \text { for } j=1, \ldots, k
$$

Moreover, to simplify the notation, we rename the components Ω_{j} of Ω in way such that $\Upsilon=\{1,2, \ldots, l\}$ for some $1 \leq l \leq k$. Then, we define:

$$
\begin{aligned}
& \gamma_{0}\left(t_{1}, \ldots, t_{l}\right)(x)=\sum_{j=1}^{l} t_{j} R w_{j}(x), \forall\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}, \\
& \Gamma_{*}=\left\{\gamma \in C\left(\left[1 / R^{2}, 1\right]^{l}, E_{\lambda} \backslash\{0\}\right) ; \gamma=\gamma_{0} \text { on } \partial\left[1 / R^{2}, 1\right]^{l}\right\}
\end{aligned}
$$

and

$$
b_{\lambda, \Upsilon}=\inf _{\gamma \in \Gamma_{*}\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}} \max _{\lambda}\left(\gamma\left(t_{1}, \ldots, t_{l}\right)\right)
$$

Next, our intention is proving that $b_{\lambda, \Upsilon}$ is a critical value for ϕ_{λ}. However, to do this, we need to some technical lemmas. The arguments used are the same found in [3]; however, for reader's convenience, we will repeat their proofs

Lemma 6.2 For all $\gamma \in \Gamma_{*}$, there exists $\left(s_{1}, \ldots, s_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}$ such that

$$
\phi_{\lambda, j}^{\prime}\left(\gamma\left(s_{1}, \ldots, s_{l}\right)\right)\left(\gamma\left(s_{1}, \ldots, s_{l}\right)\right)=0, \forall j \in \Upsilon
$$

Proof Given $\gamma \in \Gamma_{*}$, consider $\tilde{\gamma}:\left[1 / R^{2}, 1\right]^{l} \rightarrow \mathbb{R}^{l}$ such that

$$
\tilde{\gamma}(\mathbf{t})=\left(\phi_{\lambda, 1}^{\prime}(\gamma(\mathbf{t})) \gamma(\mathbf{t}), \ldots, \phi_{\lambda, l}^{\prime}(\gamma(\mathbf{t})) \gamma(\mathbf{t})\right), \text { where } \mathbf{t}=\left(t_{1}, \ldots, t_{l}\right)
$$

For $\mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l}$, it holds $\widetilde{\gamma}(\mathbf{t})=\widetilde{\gamma_{0}}(\mathbf{t})$. From this, we observe that there is no $\mathbf{t} \in$ $\partial\left[1 / R^{2}, 1\right]^{l}$ with $\tilde{\gamma}(\mathbf{t})=0$. Indeed, for any $j \in \Upsilon$,

$$
\phi_{\lambda, j}^{\prime}\left(\gamma_{0}(\mathbf{t})\right) \gamma_{0}(\mathbf{t})=I_{j}^{\prime}\left(t_{j} R w_{j}\right)\left(t_{j} R w_{j}\right)
$$

This form, if $\mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l}$, then $t_{j_{0}}=1$ or $t_{j_{0}}=\frac{1}{R^{2}}$, for some $j_{0} \in \Upsilon$. Consequently,

$$
\phi_{\lambda, j_{0}}^{\prime}\left(\gamma_{0}(\mathbf{t})\right) \gamma_{0}(\mathbf{t})=I_{j_{0}}^{\prime}\left(R w_{j_{0}}\right)\left(R w_{j_{0}}\right) \text { or } \phi_{\lambda, j_{0}}^{\prime}\left(\gamma_{0}(\mathbf{t})\right) \gamma_{0}(\mathbf{t})=I_{j_{0}}^{\prime}\left(\frac{1}{R} w_{j_{0}}\right)\left(\frac{1}{R} w_{j_{0}}\right)
$$

Therefore, if $\phi_{\lambda, j_{0}}^{\prime}\left(\gamma_{0}(\mathbf{t})\right) \gamma_{0}(\mathbf{t})=0$, we get $I_{j_{0}}\left(R w_{j_{0}}\right) \geq c_{j_{0}}$ or $I_{j_{0}}\left(\frac{1}{R} w_{j_{0}}\right) \geq c_{j_{0}}$, which is a contradiction with (6.1).

Now, we compute the degree $\operatorname{deg}\left(\widetilde{\gamma},\left(1 / R^{2}, 1\right)^{l},(0, \ldots, 0)\right)$. Since

$$
\operatorname{deg}\left(\widetilde{\gamma},\left(1 / R^{2}, 1\right)^{l},(0, \ldots, 0)\right)=\operatorname{deg}\left(\widetilde{\gamma_{0}},\left(1 / R^{2}, 1\right)^{l},(0, \ldots, 0)\right)
$$

and, for $\mathbf{t} \in\left(1 / R^{2}, 1\right)^{l}$,

$$
\tilde{\gamma_{0}}(\mathbf{t})=0 \Longleftrightarrow \mathbf{t}=\left(\frac{1}{R}, \ldots, \frac{1}{R}\right),
$$

we derive

$$
\operatorname{deg}\left(\widetilde{\gamma},\left(1 / R^{2}, 1\right)^{l},(0, \ldots, 0)\right) \neq 0
$$

This shows what was stated.
Proposition 6.3 If $c_{\lambda, \Upsilon}=\sum_{j=1}^{l} c_{\lambda, j}$ and $c_{\Upsilon}=\sum_{j=1}^{l} c_{j}$, then
(i) $c_{\lambda, \Upsilon} \leq b_{\lambda, \Upsilon} \leq c_{\Upsilon}, \forall \lambda \geq 1$;
(ii) $b_{\lambda, \Upsilon} \rightarrow c_{\Upsilon}$, as $\lambda \rightarrow \infty$;
(iii) $\phi_{\lambda}(\gamma(\mathbf{t}))<c_{\Upsilon}, \forall \lambda \geq 1, \gamma \in \Gamma_{*}$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in \partial\left[1 / R^{2}, 1\right]^{l}$.

Proof (i) Once $\gamma_{0} \in \Gamma_{*}$,

$$
b_{\lambda, \Upsilon} \leq \max _{\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}} \phi_{\lambda}\left(\gamma_{0}\left(t_{1}, \ldots, t_{l}\right)\right)=\max _{\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}} \sum_{j=1}^{l} I_{j}\left(t_{j} R w_{j}\right)=c_{\Upsilon}
$$

Now, fixing $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}$ given in Lemma 6.2 and recalling that

$$
c_{\lambda, j}=\inf \left\{\phi_{\lambda, j}(u) ; u \in W^{1, p(x)}\left(\Omega_{j}^{\prime}\right) \backslash\{0\} \text { and } \phi_{\lambda, j}^{\prime}(u) u=0\right\},
$$

it follows that

$$
\phi_{\lambda, j}(\gamma(\mathbf{s})) \geq c_{\lambda, j}, \forall j \in \Upsilon .
$$

From (3.9),

$$
\phi_{\lambda, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}}(u) \geq 0, \forall u \in W^{1, p(x)}\left(\mathbb{R}^{N} \backslash \Omega_{\Upsilon}^{\prime}\right),
$$

which leads to

$$
\phi_{\lambda}(\gamma(\mathbf{t})) \geq \sum_{j=1}^{l} \phi_{\lambda, j}(\gamma(\mathbf{t})), \forall \mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l} .
$$

Thus

$$
\max _{\left.\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]\right]^{\prime}} \phi_{\lambda}\left(\gamma\left(t_{1}, \ldots, t_{l}\right)\right) \geq \phi_{\lambda}(\gamma(\mathbf{s})) \geq c_{\lambda, \Upsilon},
$$

showing that

$$
b_{\lambda, \Upsilon} \geq c_{\lambda, \Upsilon}
$$

(ii) This limit is clear by the previous item, since we already know $c_{\lambda, j} \rightarrow c_{j}$, as $\lambda \rightarrow \infty$;
(iii) For $\mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in \partial\left[1 / R^{2}, 1\right]^{l}$, it holds $\gamma(\mathbf{t})=\gamma_{0}(\mathbf{t})$. From this,

$$
\phi_{\lambda}(\gamma(\mathbf{t}))=\sum_{j=1}^{l} I_{j}\left(t_{j} R w_{j}\right) .
$$

Writing

$$
\phi_{\lambda}(\gamma(\mathbf{t}))=\sum_{\substack{j=1 \\ j \neq j_{0}}}^{l} I_{j}\left(t_{j} R w_{j}\right)+I_{j_{0}}\left(t_{j_{0}} R w_{j_{0}}\right),
$$

where $t_{j_{0}} \in\left\{\frac{1}{R^{2}}, 1\right\}$, from (6.1) we derive

$$
\phi_{\lambda}(\gamma(\mathbf{t})) \leq c_{\Upsilon}-\epsilon,
$$

for some $\epsilon>0$, so (iii).

Corollary $6.4 b_{\lambda, \Upsilon}$ is a critical value of ϕ_{λ}, for λ sufficiently large.
Proof Assume $b_{\tilde{\lambda}, \Upsilon}$ is not a critical value of $\phi_{\tilde{\lambda}}$ for some $\tilde{\lambda}$. We will prove that exists λ_{1} such that $\tilde{\lambda}<\lambda_{1}$. Indeed, by item (iii) of Proposition 6.3, we have seen that

$$
\phi_{\lambda}\left(\gamma_{0}(\mathbf{t})\right)<c_{\Upsilon}, \forall \lambda \geq 1, \mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l}
$$

This way

$$
\mathcal{M}=\max _{\mathbf{t} \in\left[1 / R^{2}, 1\right]^{\prime}} \phi_{\widetilde{\lambda}}\left(\gamma_{0}(\mathbf{t})\right)<c_{\Upsilon} .
$$

Since $b_{\lambda, \Upsilon} \rightarrow c_{\Upsilon}$ (item (ii) of Proposition 6.3), there exists $\lambda_{1}>1$ such that if $\lambda \geq \lambda_{1}$, then

$$
\mathcal{M}<b_{\lambda, \Upsilon} .
$$

So, if $\tilde{\lambda} \geq \lambda_{1}$, we can find $\tau=\tau(\tilde{\lambda})>0$ small enough, with the ensuing property

$$
\begin{equation*}
\mathcal{M}<b_{\tilde{\lambda}, \Upsilon}-2 \tau \tag{6.2}
\end{equation*}
$$

From the deformation's lemma [31, Page 38], there is $\eta: E_{\lambda} \rightarrow E_{\lambda}$ such that

$$
\eta\left(\phi_{\tilde{\lambda}}^{b_{\widetilde{\lambda}, \Upsilon}+\tau}\right) \subset \phi_{\tilde{\lambda}}^{b_{\widetilde{\lambda}, \Upsilon}-\tau} \text { and } \eta(u)=u \text {, for } u \notin \phi_{\tilde{\lambda}}^{-1}\left(\left[b_{\widetilde{\lambda}, \Upsilon}-2 \tau, b_{\widetilde{\lambda}, \Upsilon}+2 \tau\right]\right) .
$$

Then, by (6.2),

$$
\eta\left(\gamma_{0}(\mathbf{t})\right)=\gamma_{0}(\mathbf{t}), \forall \mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l} .
$$

Now, using the definition of $b_{\tilde{\lambda}, \Upsilon}$, there exists $\gamma_{*} \in \Gamma_{*}$ satisfying

$$
\begin{equation*}
\max _{\mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}} \phi_{\widetilde{\lambda}}\left(\gamma_{*}(\mathbf{t})\right)<b_{\widetilde{\lambda}, \Upsilon}+\tau . \tag{6.3}
\end{equation*}
$$

Defining

$$
\widetilde{\gamma}(\mathbf{t})=\eta\left(\gamma_{*}(\mathbf{t})\right), \mathbf{t} \in\left[1 / R^{2}, 1\right]^{l},
$$

due to (6.3), we obtain

$$
\phi_{\widetilde{\lambda}}(\widetilde{\gamma}(\mathbf{t})) \leq b_{\widetilde{\lambda}, \Upsilon}-\tau, \forall \mathbf{t} \in\left[1 / R^{2}, 1\right]^{l} .
$$

But since $\tilde{\gamma} \in \Gamma_{*}$, we deduce

$$
b_{\tilde{\lambda}, \Upsilon} \leq \max _{\mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}} \phi_{\widetilde{\lambda}}(\widetilde{\gamma}(\mathbf{t})) \leq b_{\widetilde{\lambda}, \Upsilon}-\tau,
$$

a contradiction. So, $\tilde{\lambda}<\lambda_{1}$.

7 The proof of the main theorem

To prove Theorem 1.1, we need to find nonnegative solutions u_{λ} for large values of λ, which converges to a least energy solution in each $\Omega_{j}(j \in \Upsilon)$ and to 0 in Ω_{Υ}^{c} as $\lambda \rightarrow \infty$. To this end, we will show two propositions which together with the Propositions 4.1 and 5.1 will imply that Theorem 1.1 holds.

Henceforth, we denote by

$$
r=R^{p_{+}} \sum_{j=1}^{l}\left(\frac{1}{p_{+}}-\frac{1}{\theta}\right)^{-1} c_{j}, \quad \mathcal{B}_{r}^{\lambda}=\left\{u \in E_{\lambda} ; \varrho_{\lambda}(u) \leq r\right\}
$$

and

$$
\phi_{\lambda}^{c_{\Upsilon}}=\left\{u \in E_{\lambda} ; \phi_{\lambda}(u) \leq c_{\Upsilon}\right\} .
$$

Moreover, for small values of μ,

$$
\mathcal{A}_{\mu}^{\lambda}=\left\{u \in \mathcal{B}_{r}^{\lambda} ; \varrho_{\lambda, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}}(u) \leq \mu,\left|\phi_{\lambda, j}(u)-c_{j}\right| \leq \mu, \forall j \in \Upsilon\right\} .
$$

We observe that

$$
w=\sum_{j=1}^{l} w_{j} \in \mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c \Upsilon},
$$

showing that $\mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c \Upsilon} \neq \emptyset$. Fixing

$$
\begin{equation*}
0<\mu<\frac{1}{4} \min _{j \in \Gamma} c_{j} \tag{7.1}
\end{equation*}
$$

we have the following uniform estimate of $\left\|\phi_{\lambda}^{\prime}(u)\right\|$ on the region $\left(\mathcal{A}_{2 \mu}^{\lambda} \backslash \mathcal{A}_{\mu}^{\lambda}\right) \cap \phi_{\lambda}^{c_{\Upsilon}}$.
Proposition 7.1 Let $\mu>0$ satisfying (7.1). Then, there exist $\Lambda_{*} \geq 1$ and $\sigma_{0}>0$ independent of λ such that

$$
\begin{equation*}
\left\|\phi_{\lambda}^{\prime}(u)\right\| \geq \sigma_{0}, \text { for } \lambda \geq \Lambda_{*} \text { and all } u \in\left(\mathcal{A}_{2 \mu}^{\lambda} \backslash \mathcal{A}_{\mu}^{\lambda}\right) \cap \phi_{\lambda}^{c_{\Upsilon}} \text {. } \tag{7.2}
\end{equation*}
$$

Proof We assume that there exist $\lambda_{n} \rightarrow \infty$ and $u_{n} \in\left(\mathcal{A}_{2 \mu}^{\lambda_{n}} \backslash \mathcal{A}_{\mu}^{\lambda_{n}}\right) \cap \phi_{\lambda_{n}}^{c_{\Upsilon}}$ such that

$$
\left\|\phi_{\lambda_{n}}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 .
$$

Since $u_{n} \in \mathcal{A}_{2 \mu}^{\lambda_{n}}$, this implies $\left(\varrho_{\lambda_{n}}\left(u_{n}\right)\right)$ is a bounded sequence and, consequently, it follows that $\left(\phi_{\lambda_{n}}\left(u_{n}\right)\right)$ is also bounded. Thus, passing a subsequence if necessary, we can assume $\phi_{\lambda_{n}}\left(u_{n}\right)$ converges. Thus, from Proposition 4.1, there exists $0 \leq u \in W_{0}^{1, p(x)}\left(\Omega_{\Upsilon}\right)$ such that $u_{\Omega_{j}}, j \in \Upsilon$, is a solution for $\left(P_{j}\right)$,

$$
\varrho_{\lambda_{n}, \mathbb{R}^{N} \backslash \Omega_{\curlyvee}}\left(u_{n}\right) \rightarrow 0 \quad \text { and } \quad \phi_{\lambda_{n}, j}\left(u_{n}\right) \rightarrow I_{j}(u) .
$$

We know that c_{j} is the least energy level for I_{j}. So, if $u_{\Omega_{\Omega_{j}}} \neq 0$, then $I_{j}(u) \geq c_{j}$. But since $\phi_{\lambda_{n}}\left(u_{n}\right) \leq c_{\Upsilon}$, we must analyze the following possibilities:
(i) $I_{j}(u)=c_{j}, \forall j \in \Upsilon$;
(ii) $I_{j_{0}}(u)=0$, for some $j_{o} \in \Upsilon$.

If (i) occurs, then for n large, it holds

$$
\varrho_{\lambda_{n}, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}}\left(u_{n}\right) \leq \mu \text { and }\left|\phi_{\lambda_{n}, j}\left(u_{n}\right)-c_{j}\right| \leq \mu, \forall j \in \Upsilon .
$$

So $u_{n} \in \mathcal{A}_{\mu}^{\lambda_{n}}$, a contradiction.
If (ii) occurs, then

$$
\left|\phi_{\lambda_{n}, j_{0}}\left(u_{n}\right)-c_{j_{0}}\right| \rightarrow c_{j_{0}}>4 \mu,
$$

which is a contradiction with the fact that $u_{n} \in \mathcal{A}_{2 \mu}^{\lambda_{n}}$. Thus, we have completed the proof.
Proposition 7.2 Let $\mu>0$ satisfying (7.1) and $\Lambda_{*} \geq 1$ given in the previous proposition. Then, for $\lambda \geq \Lambda_{*}$, there exists a solution u_{λ} of $\left(A_{\lambda}\right)$ such that $u_{\lambda} \in \mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c_{\Upsilon}}$.

Proof Let $\lambda \geq \Lambda_{*}$. Assume that there are no critical points of ϕ_{λ} in $\mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c_{r}}$. Since ϕ_{λ} is a ($P S$) functional, there exists a constant $d_{\lambda}>0$ such that

$$
\left\|\phi_{\lambda}^{\prime}(u)\right\| \geq d_{\lambda}, \text { for all } u \in \mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c_{\Upsilon}} .
$$

From Proposition 7.1, we have

$$
\left\|\phi_{\lambda}^{\prime}(u)\right\| \geq \sigma_{0}, \text { for all } u \in\left(\mathcal{A}_{2 \mu}^{\lambda} \backslash \mathcal{A}_{\mu}^{\lambda}\right) \cap \phi_{\lambda}^{c_{\gamma}},
$$

where $\sigma_{0}>0$ does not depend on λ. In what follows, $\Psi: E_{\lambda} \rightarrow \mathbb{R}$ is a continuous functional verifying

$$
\Psi(u)=1, \text { for } u \in \mathcal{A}_{\frac{3}{2} \mu}^{\lambda}, \Psi(u)=0, \text { for } u \notin \mathcal{A}_{2 \mu}^{\lambda} \text { and } 0 \leq \Psi(u) \leq 1, \forall u \in E_{\lambda}
$$

We also consider $H: \phi_{\lambda}^{c \Upsilon} \rightarrow E_{\lambda}$ given by

$$
H(u)= \begin{cases}-\Psi(u)\|Y(u)\|^{-1} Y(u), & \text { for } u \in \mathcal{A}_{2 \mu}^{\lambda} \\ 0, & \text { for } u \notin \mathcal{A}_{2 \mu}^{\lambda}\end{cases}
$$

where Y is a pseudo-gradient vector field for Φ_{λ} on $\mathcal{K}=\left\{u \in E_{\lambda} ; \phi_{\lambda}^{\prime}(u) \neq 0\right\}$. Observe that H is well defined, once $\phi_{\lambda}^{\prime}(u) \neq 0$, for $u \in \mathcal{A}_{2 \mu}^{\lambda} \cap \phi_{\lambda}^{c \Upsilon}$. The inequality

$$
\|H(u)\| \leq 1, \forall \lambda \geq \Lambda_{*} \text { and } u \in \phi_{\lambda}^{c \curlyvee},
$$

guarantees that the deformation flow $\eta:[0, \infty) \times \phi_{\lambda}^{c_{\Upsilon}} \rightarrow \phi_{\lambda}^{c \Upsilon}$ defined by

$$
\frac{d \eta}{d t}=H(\eta), \eta(0, u)=u \in \phi_{\lambda}^{c \Upsilon}
$$

verifies

$$
\begin{align*}
& \frac{d}{d t} \phi_{\lambda}(\eta(t, u)) \leq-\frac{1}{2} \Psi(\eta(t, u))\left\|\phi_{\lambda}^{\prime}(\eta(t, u))\right\| \leq 0 \tag{7.3}\\
& \left\|\frac{d \eta}{d t}\right\|_{\lambda}=\|H(\eta)\|_{\lambda} \leq 1 \tag{7.4}
\end{align*}
$$

and

$$
\begin{equation*}
\eta(t, u)=u \text { for all } t \geq 0 \text { and } u \in \phi_{\lambda}^{c_{\Upsilon}} \backslash \mathcal{A}_{2 \mu}^{\lambda} . \tag{7.5}
\end{equation*}
$$

We study now two paths, which are relevant for what follows:

- The path $\mathbf{t} \mapsto \eta\left(t, \gamma_{0}(\mathbf{t})\right)$, where $\mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}$.

The definition of γ_{0} combined with the condition on μ gives

$$
\gamma_{0}(\mathbf{t}) \notin \mathcal{A}_{2 \mu}^{\lambda}, \forall \mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l} .
$$

Since

$$
\phi_{\lambda}\left(\gamma_{0}(\mathbf{t})\right)<c_{\Upsilon}, \forall \mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l}
$$

from (7.5), it follows that

$$
\eta\left(t, \gamma_{0}(\mathbf{t})\right)=\gamma_{0}(\mathbf{t}), \forall \mathbf{t} \in \partial\left[1 / R^{2}, 1\right]^{l} .
$$

So, $\eta\left(t, \gamma_{0}(\mathbf{t})\right) \in \Gamma_{*}$, for each $t \geq 0$.

- The path $\mathbf{t} \mapsto \gamma_{0}(\mathbf{t})$, where $\mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]^{l}$.

We observe that

$$
\operatorname{supp}\left(\gamma_{0}(\mathbf{t})\right) \subset \overline{\Omega_{\Upsilon}}
$$

and

$$
\phi_{\lambda}\left(\gamma_{0}(\mathbf{t})\right) \text { does not depend on } \lambda \geq 1 \text {, }
$$

forall $\mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}$. Moreover,

$$
\phi_{\lambda}\left(\gamma_{0}(\mathbf{t})\right) \leq c_{\Upsilon}, \forall \mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}
$$

and

$$
\phi_{\lambda}\left(\gamma_{0}(\mathbf{t})\right)=c_{\Upsilon \text { if, }} \quad \text { and } \quad \text { only if, } \quad t_{j}=\frac{1}{R}, \forall j \in \Upsilon .
$$

Therefore

$$
m_{0}=\sup \left\{\phi_{\lambda}(u) ; u \in \gamma_{0}\left(\left[1 / R^{2}, 1\right]^{l}\right) \backslash A_{\mu}^{\lambda}\right\}
$$

is independent of λ and $m_{0}<c_{\Upsilon}$. Now, observing that there exists $K_{*}>0$ such that

$$
\left|\phi_{\lambda, j}(u)-\phi_{\lambda, j}(v)\right| \leq K_{*}\|u-v\|_{\lambda, \Omega_{j}^{\prime}}, \forall u, v \in \mathcal{B}_{r}^{\lambda} \text { and } \forall j \in \Upsilon
$$

we derive

$$
\begin{equation*}
\max _{\mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}} \phi_{\lambda}\left(\eta\left(T, \gamma_{0}(\mathbf{t})\right)\right) \leq \max \left\{m_{0}, c_{\Upsilon}-\frac{1}{2 K_{*}} \sigma_{0} \mu\right\} \tag{7.6}
\end{equation*}
$$

for $T>0$ large.
In fact, writing $u=\gamma_{0}(\mathbf{t}), \mathbf{t} \in\left[1 / R^{2}, 1\right]^{l}$, if $u \notin A_{\mu}^{\lambda}$, from (7.3),

$$
\phi_{\lambda}(\eta(t, u)) \leq \phi_{\lambda}(u) \leq m_{0}, \forall t \geq 0
$$

and we have nothing more to do. We assume then $u \in A_{\mu}^{\lambda}$ and set

$$
\widetilde{\eta}(t)=\eta(t, u), \widetilde{d_{\lambda}}=\min \left\{d_{\lambda}, \sigma_{0}\right\} \text { and } T=\frac{\sigma_{0} \mu}{K_{*} \widetilde{d_{\lambda}}}
$$

Now, we will analyze the ensuing cases:
Case 1: $\widetilde{\eta}(t) \in \mathcal{A}_{\frac{3}{2} \mu}^{\lambda}, \forall t \in[0, T]$.
Case 2: $\widetilde{\eta}\left(t_{0}\right) \in \partial \mathcal{A}_{\frac{3}{2} \mu}^{\lambda}$, for some $t_{0} \in[0, T]$.

Analysis of Case 1

In this case, we have $\Psi(\widetilde{\eta}(t))=1$ and $\left\|\phi_{\lambda}^{\prime}(\widetilde{\eta}(t))\right\| \geq \widetilde{d_{\lambda}}$ for all $t \in[0, T]$. Hence, from (7.3),

$$
\phi_{\lambda}(\widetilde{\eta}(T))=\phi_{\lambda}(u)+\int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} s} \phi_{\lambda}(\widetilde{\eta}(s)) \mathrm{d} s \leq c_{\Upsilon}-\frac{1}{2} \int_{0}^{T} \tilde{d}_{\lambda} \mathrm{d} s
$$

that is,

$$
\phi_{\lambda}(\widetilde{\eta}(T)) \leq c_{\Upsilon}-\frac{1}{2} \widetilde{d}_{\lambda} T=c_{\Upsilon}-\frac{1}{2 K_{*}} \sigma_{0} \mu
$$

showing (7.6).

Analysis of Case 2

In this case, there exist $0 \leq t_{1} \leq t_{2} \leq T$ satisfying

$$
\begin{aligned}
& \tilde{\eta}\left(t_{1}\right) \in \partial \mathcal{A}_{\mu}^{\lambda} \\
& \tilde{\eta}\left(t_{2}\right) \in \partial \mathcal{A}_{\frac{3}{2} \mu}^{\lambda}
\end{aligned}
$$

and

$$
\widetilde{\eta}(t) \in \mathcal{A}_{\frac{3}{2} \mu}^{\lambda} \backslash \mathcal{A}_{\mu}^{\lambda}, \forall t \in\left(t_{1}, t_{2}\right] .
$$

We claim that

$$
\left\|\widetilde{\eta}\left(t_{2}\right)-\widetilde{\eta}\left(t_{1}\right)\right\| \geq \frac{1}{2 K_{*}} \mu .
$$

Setting $w_{1}=\widetilde{\eta}\left(t_{1}\right)$ and $w_{2}=\widetilde{\eta}\left(t_{2}\right)$, we get

$$
\varrho_{\lambda, \mathbb{R}^{N} \backslash \Omega_{\Upsilon}}\left(w_{2}\right)=\frac{3}{2} \mu \text { or }\left|\phi_{\lambda, j_{0}}\left(w_{2}\right)-c_{j_{0}}\right|=\frac{3}{2} \mu,
$$

for some $j_{0} \in \Upsilon$. We analyze the latter situation, once that the other one follows the same reasoning. From the definition of $\mathcal{A}_{\mu}^{\lambda}$,

$$
\left|\phi_{\lambda, j_{0}}\left(w_{1}\right)-c_{j_{0}}\right| \leq \mu,
$$

consequently,

$$
\left\|w_{2}-w_{1}\right\| \geq \frac{1}{K_{*}}\left|\phi_{\lambda, j_{0}}\left(w_{2}\right)-\phi_{\lambda, j_{0}}\left(w_{1}\right)\right| \geq \frac{1}{2 K_{*}} \mu .
$$

Then, by mean value theorem, $t_{2}-t_{1} \geq \frac{1}{2 K_{*}} \mu$ and, this form,

$$
\phi_{\lambda}(\widetilde{\eta}(T)) \leq \phi_{\lambda}(u)-\int_{0}^{T} \Psi(\widetilde{\eta}(s))\left\|\phi_{\lambda}^{\prime}(\widetilde{\eta}(s))\right\| \mathrm{d} s
$$

implying

$$
\phi_{\lambda}(\widetilde{\eta}(T)) \leq c_{\Upsilon}-\int_{t_{1}}^{t_{2}} \sigma_{0} \mathrm{~d} s=c_{\Upsilon}-\sigma_{0}\left(t_{2}-t_{1}\right) \leq c_{\Upsilon}-\frac{1}{2 K_{*}} \sigma_{0} \mu
$$

which proves 7.6. Fixing $\widehat{\eta}\left(t_{1}, \ldots, t_{l}\right)=\eta\left(T, \gamma_{0}\left(t_{1}, \ldots, t_{l}\right)\right)$, we have that $\widehat{\eta} \in \Gamma_{*}$ and, hence,

$$
b_{\lambda, \Gamma} \leq \max _{\left(t_{1}, \ldots, t_{l}\right) \in\left[1 / R^{2}, 1\right]} \phi_{\lambda}\left(\widehat{\eta}\left(t_{1}, \ldots, t_{l}\right)\right) \leq \max \left\{m_{0}, c_{\Upsilon}-\frac{1}{2 K_{*}} \sigma_{0} \mu\right\}<c_{\Upsilon},
$$

which contradicts the fact that $b_{\lambda, \Upsilon} \rightarrow c_{\Upsilon}$.
Proof of Theorem 1.1 According Proposition 7.2, for μ satisfying (7.1) and $\Lambda_{*} \geq 1$, there exists a solution u_{λ} for $\left(A_{\lambda}\right)$ such that $u_{\lambda} \in \mathcal{A}_{\mu}^{\lambda} \cap \phi_{\lambda}^{c \Upsilon}$, for all $\lambda \geq \Lambda_{*}$.
Claim: There are $\lambda_{0} \geq \Lambda_{*}$ and $\mu_{0}>0$ small enough, such that u_{λ} is a solution for $\left(P_{\lambda}\right)$ for $\lambda \geq \Lambda_{0}$ and $\mu \in\left(0, \mu_{0}\right)$.

Indeed, assume by contradiction that there are $\lambda_{n} \rightarrow \infty$ and $\mu_{n} \rightarrow 0$, such that $\left(u_{\lambda_{n}}\right)$ is not a solution for $\left(P_{\lambda_{n}}\right)$. From Proposition 7.2, the sequence $\left(u_{\lambda_{n}}\right)$ verifies:
(a) $\phi_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}\right)=0, \forall n \in \mathbb{N}$;
(b) $\varrho_{\lambda_{n}, \mathbb{R}^{N} \backslash \Omega_{\curlyvee}}\left(u_{\lambda_{n}}\right) \rightarrow 0$;
(c) $\phi_{\lambda_{n}, j}\left(u_{\lambda_{n}}\right) \rightarrow c_{j}, \forall j \in \Upsilon$.

The item (b) ensures we can use Proposition 5.1 to deduce $u_{\lambda_{n}}$ is a solution for $\left(P_{\lambda_{n}}\right)$, for large values of n, which is a contradiction, showing this way the claim.

Now, our goal is to prove the second part of the theorem. To this end, let $\left(u_{\lambda_{n}}\right)$ be a sequence verifying the above limits. Since $\phi_{\lambda_{n}}\left(u_{\lambda_{n}}\right)$ is bounded, passing a subsequence, we obtain that $\phi_{\lambda_{n}}\left(u_{\lambda_{n}}\right) \rightarrow c$. This way, using Proposition 4.1 combined with item (c), we derive $u_{\lambda_{n}}$ converges in $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ to a function $u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right)$, which satisfies $u=0$ outside Ω_{Υ} and $u_{\Omega_{\Omega_{j}}}, j \in \Upsilon$, is a least energy solution for

$$
\begin{cases}-\Delta_{p(x)} u+Z(x) u=f(u), & \text { in } \Omega_{j}, \\ u \in W_{0}^{1, p(x)}\left(\Omega_{j}\right), u \geq 0, & \text { in } \Omega_{j}\end{cases}
$$

Acknowledgments The authors would like to thank the anonymous referee for their valuable suggestions.

References

1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213-259 (2002)
2. Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: stationary case. C. R. Math. Acad. Sci. Paris 334, 817-822 (2002)
3. Alves, C.O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491-509 (2006)
4. Alves, C.O.: Existence of solutions for a degenerate $p(x)$-Laplacian equation in \mathbb{R}^{N}. J. Math. Anal. Appl. 345, 731-742 (2008)
5. Alves, C.O.: Existence of radial solutions for a class of $p(x)$-Laplacian equations with critical growth. Differ. Integral Equ. 23, 113-123 (2010)
6. Alves, C.O., Barreiro, J.L.P.: Existence and multiplicity of solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 403, 143-154 (2013)
7. Alves, C.O., Ferreira, M.C.: Nonlinear perturbations of a $p(x)$-Laplacian equation with critical growth in \mathbb{R}^{N}. Math. Nach. 287(8-9), 849-868 (2014)
8. Alves, C.O., Ferreira, M.C.: Existence of solutions for a class of $p(x)$-Laplacian equations involving a concave-convex nonlinearity with critical growth in \mathbb{R}^{N}. Topol. Methods Nonlinear Anal. (2014, to appear)
9. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of problems in \mathbb{R}^{N} involving $p(x)$ Laplacian. Prog. Nonlinear Differ. Equ. Their Appl. 66, 17-32 (2005)
10. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973)
11. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19-36 (2006)
12. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167-188 (1997)
13. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383-1406 (2006)
14. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4, 121-137 (1996)
15. Ding, Y.H., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112(1), 109-135 (2003)
16. Fan, X.L.: On the sub-supersolution method for $p(x)$-Laplacian equations. J. Math. Anal. Appl. 330, 665-682 (2007)
17. Fan, X.L.: $p(x)$-Laplacian equations in \mathbb{R}^{N} with periodic data and nonperiodic perturbations. J. Math. Anal. Appl. 341, 103-119 (2008)
18. Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36, 295-318 (1999)
19. Fan, X.L., Zhao, D.: On the Spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$ J. Math. Anal. Appl. 263, 424-446 (2001)
20. Fan, X.L., Zhao, D.: Nodal solutions of $p(x)$-Laplacian equations. Nonlinear Anal. 67, 2859-2868 (2007)
21. Fan, X.L., Shen, J.S., Zhao, D.: Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$ J. Math. Anal. Appl. 262, 749-760 (2001)
22. Fernández, Bonder J., Saintier, N., Silva, A.: On the Sobolev embedding theorem for variable exponent spaces in the critical range. J. Differ. Equ. 253, 1604-1620 (2012)
23. Fernández Bonder, J., Saintier, N., Silva, A.: On the Sobolev trace theorem for variable exponent spaces in the critical range. Ann. Mat. Pura Appl. (2014, to appear)
24. Fu, Y., Zhang, X.: Multiple solutions for a class of $p(x)$-Laplacian equations in involving the critical exponent. Proc. R. Soc. Edinb. Sect. A 466, 1667-1686 (2010)
25. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18(1-2), 153-167 (1993)
26. Kavian, O.: Introduction à la théorie de points critiques et applications aux problèmes elliptiques. Springer, Paris (1993)
27. Ladyzhenskaya, O.A., Ural'tseva, N.N.: Linear and quasilinear elliptic equations. Academic Press, New York (1968)
28. Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135(9), 2929-2937 (2007)
29. Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin (2000)
30. Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 27-42 (1992)
31. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

[^0]: Partially supported by INCT-MAT and PROCAD.
 C. O. Alves was partially supported by CNPq/Brazil 303080/2009-4.
 C. O. Alves • M. C. Ferreira ($\boxed{ }$)

 Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, Campina Grande, PB CEP: 58429-900, Brazil
 e-mail: marcelo@dme.ufcg.edu.br
 C. O. Alves
 e-mail: coalves@dme.ufcg.edu.br

