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Abstract We establish the existence of multi-bump solutions for the following class of
quasilinear problems

—Apoyt + (AV () + Z)u"P 7 = f(x,u)inRY, u > 0in RY,

where the nonlinearity f: RY x R — R is a continuous function having a subcritical growth
and potentials V, Z: RY — R are continuous functions verifying some hypotheses. The
main tool used is the variational method.
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1 Introduction

In this paper, we consider the existence and multiplicity of solutions for the following class
of problems
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1564 C. O. Alves, M. C. Ferreira

—Ap+ AV (@) + Zx)uPD 1 = f(x,u), inRY,
(Pk) u>0, in RN,
ue Whre (RN,

where A (y) is the p(x)-Laplacian operator given by
Apyu = div (|Vu|p(x)_2Vu) .

Here, . > 0 is a parameter, p: RY — R is a Lipschitz function, V, Z: RN — R are
continuous functions with V > 0, and f: RN x R — R is continuous having a subcritical
growth. Furthermore, we take into account the following set of hypotheses:
(H) l<p_=infp<py=supp < N.

RN RN
(Hy) 2 = int 7a¥(0)) # © and bounded, Q = y-l (0) and 2 can be decomposed in k

connected components 1, ..., Q with dist(Qi, Qj) >0,i#]j.

(H3) There exists M > 0 such that

AV +Z(x) > M, Vx e RV A > 1.
(H4) There exists K > 0 such that
|Z(x)| < K, Vx e RV,
1)
|f (x, 1)l

o1 < 0 uniformly in x € ]RN,

lim sup
Uk»m)|tw

where ¢: RY — R is continuous with p, < ¢g_ and ¢ <€ p* = NN—_’;’. Here, the
notation ¢ < p* means that in}\f(p* —q) > 0.
R

(f2) f@&, 1) =o(|t|P+~"), t = 0, uniformly in x € R,
(f3) There exists 8 > p. such that

0<0F(x,1) < f(x,0)t, Vx e RNt > 0,
where F(x,1) = [j f(x,s)ds.

1) . . . .
(f1) J;}Ef_l) s strictly increasing in t € (0, 00), for each x € RV,
(fs) Ya,be R, a<b, sup |f(x,t)| < oo.
xeRN
r€la,b]

A typical example of nonlinearity verifying (f1) — (f5) is
Fle ) =192, vx e RN and Vr € R,

where p+ < g— and ¢ K p*.

Partial differential equations involving the p(x)-Laplacian arise, for instance, as a math-
ematical model for problems involving electrorheological fluids and image restorations, see
[1,2,11-13,29]. This explains the intense research on this subject in the last decades. A lot
of works, mainly treating nonlinearities with subcritical growth, are available (see [4-9,16—
18,20-24,28] for interesting works). Nevertheless, to the best of the author’s knowledge, this
is the first work dealing with multi-bump solutions for this class of problems.
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Quasilinear problems involving variable exponents 1565

The motivation to investigate problem (P;L) in the setting of variable exponents has been
the papers [3] and [15]. In [15], inspired by del Pino and Felmer [14] and Séré [30], the
authors considered (P,\) forp=2and f(u) =ul,q € (1, %) if N >3;q € (1,00) if
N =1, 2. The authors showed that (PA) has at least 2F — 1 solutions u;, for large values of
A. More precisely, one solution for each non-empty subset Y of {1, ..., k}. Moreover, fixed
YT C {1,...,k},it was proved that, for any sequence A, — 00, we can extract a subsequence
(An;) such that (u }””i) converges strongly in H 1 (]RN ) to a function u, which satisfies u = 0
outside Qy = jer 2; and Ulg, J € Y is aleast energy solution for

—Au+Zxu=u?, inQj,
ue HOI(Qj), u>0, inQ;.

In [3], employing some different arguments than those used in [15], Alves extended the
results described above to the p-Laplacian operator, assuming that in (PA) the nonlinearity f
possesses a subcritical growth and 2 < p < N. In particular, fixed Y C {1, ..., k}, for any
sequence A, — 00, We can extract a subsequence (A,,) such that (u . ) converges strongly
in W7 (RV) to a function u, which satisfies u = 0 outside Qv and u|,, , j € Y, is a least
energy solution for '

—Apu+Zxu = fu), inQj,
we Wy (Q)), u>0, inQ;.

In the present paper, we extend the results found in [3] to the p(x)-Laplacian operator.
However, we would like to emphasize that in a lot of estimates, we have used different
arguments from that found in [3]. The main difference is related to the fact that for equations
involving the p(x)-Laplacian operator it is not clear that Moser’s iteration method is a good
tool to get the estimates for the L°°-norm. Here, we adapt some ideas explored in [18] and
[25] to get these estimates. For more details see Sect. 5.

Since we intend to find nonnegative solutions, throughout this paper, we replace f by
fT:RY x R — R given by

4 | f&x,n), ifr >0
! (x’t)_[o, ifr <0,

Nevertheless, for the sake of simplicity, we still write f instead of f7.
The main theorem in this paper is the following:

Theorem 1.1 Assume that (Hy) — (Hy) and (f1) — (fs5) hold. Then, there exist .o > O with
the following property: for any non-empty subset Y of {1, 2, ..., k} and A > \g, problem (P;L)
has a solution uy. Moreover, if we fix the subset '\, then for any sequence A,, — 00, we can
extract a subsequence (Ay,) such that (u;, ) converges strongly in wlp() (]RN ) to a function
u, which satisfies u = 0 outside Qv = U;eT Q; andu|Qj , J €Y, isaleast energy solution

for

—Apw + Z(xu = f(x,u), inQ;,
ue Wy (), u=0, in Q.

Notations: The following notations will be used in the present work:

e C and C; will denote generic positive constant, which may vary from line to line;
e In all the integrals, we omit the symbol dx.
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1566 C. O. Alves, M. C. Ferreira

o If u is a measurable function, we denote u™ and u™ its positive and negative part, i.e.,
u™(x) = max{u(x), 0} and u~ (x) = min{u(x), 0}.

e If u, v are measurable functions, u_ = essinf u, uy = esssup u and the notation u <K v
RN RN

means that ess igf (v — u) > 0. Moreover, we will denote by u* the function
R

i) = ,;Vj‘bfg), ifu(x) <N,
00, if u(x) > N.

2 Preliminaries on variable exponents Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponents Lebesgue and Sobolev spaces
found in [8,19,21] and their references.
Leth € L™ (]RN ) with h_ = essigf h > 1. The variable exponent Lebesgue space
R

Lh) (RN) is defined by

L") (RY) = Ju: RN — R; u is measurable and / lu|"™® < oo
RN
endowed with the norm

h(x)
<

u
il = inf x>0;/‘X
]RN

The variable exponent Sobolev space is defined by

WO (RY) = {u e L"O(RN); |Vu| e LM (RN)] ,

| inf 1 2 o/ V”h(X)+\”"(") |
u =in >0; — - <
1h(x) 5 5

RN

If i > 1, the spaces L"™ (RV) and W!®) (RV) are separable and reflexive with these
norms.
We are mainly interested in subspaces of W1"() (]RN ) given by

with the norm

Ew = {ue WO (®RY); /W(x)|u|h(x) < o0

RN

where W € C (RN ) is such that W_ > 0. Endowing Ew with the norm

. Vu
lee]lyy = inf }»>0;/()L
RN

h(x)

u [hx)
+W(x>\;\ )51,
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Quasilinear problems involving variable exponents 1567

Ey is a Banach space. Moreover, it is easy to see that Eyy < W) (RV) continuously.
In addition, we can show that E is reflexive. For the reader’s convenience, we recall some
basic results.

Proposition 2.1 The functional o: Ew — R defined by
h
o) = / (1vul"™ + W) "), @.1)
RN

has the following properties:

. h_ h
@) If lully = 1, then |lully, <o) < llully -
" h he

(D) If lullw <1, then |lully < o(u) < llully, .
In particular, for a sequence (uy) in Ew,

lupllw = 0 < o(u,) — 0, and,
(up) is bounded in Ewy <= o0(uy) is bounded in R.

Remark 2.2 For the functional gj,(x): L"™ (RV) — R given by
o () = / Jul "
RN

an analogous conclusion to that of Proposition 2.1 also holds.

Proposition 2.3 Let m € L®(RY) with 0 < m_ < m(x) < h(x)fora.e.x € RN, If
)
u e Lh(x)(RN), then |u|™™) e Lm® (RN) and

m— my m_ my
hy = MAX {'”'hw |“|h<x>} = futly + 1l

m(x)

Related to the Lebesgue space L") (RN ), we have the following generalized Holder’s
inequality.
Proposition 2.4 (Holder’s inequality) Ifh_ > 1, let i’ : RN — R such that

1 1

— =1 e x eRY.
) + s, fora.e x €

Then, for any u € L"™) (]RN) and v e L"'®) (RN),

1 1
/ luv| dx < (h— + f) [ulno) [0l )
RN -

We can define variable exponent Lebesgue spaces with vector values. We say u =
(uy,...,up): RY — RL ¢ Lh()‘)(RN,RL) if, and only if, u; € Lh(x)(RN), fori =
1,...,L.On L"™ (RN RF), we consider the norm || o ¥ gLy = Zle i |hx)-

We state below lemmas of Brezis—Lieb type. The proof of the two first results follows the
same arguments explored at [26], while the proof of the latter can be found at [8].
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1568 C. O. Alves, M. C. Ferreira

Proposition 2.5 (Brezis—Lieb lemma, first version) Let (u,) be a bounded sequence in
LM (RN, RL) such that u, (x) — u(x) for a.e. x € RN, Then, u € Lh@) (]RN, RL) and
J i = b = 9] dx = 0, 22)

RN

Proposition 2.6 (Brezis—Lieb lemma, second version) Let (u,,) be a bounded sequence in
Lh®) (RN, RL) withh_ > 1 and u,(x) — u(x) fora.e. x € RN, Then

U, = u in Lh(x)(RN, RL).

Proposition 2.7 (Brezis—Lieb lemma, third version) Let (u,) be a bounded sequence in
Lh) (RN, RL) withh_ > 1 and u,(x) — u(x) fora.e. x € RN. Then

_ _ P 4Es)
J 02 =y = a2 =0 = 02 dx = o). 23)
RN

To finish this section, we notice that for any open subset 2 C RY, we can define in the
same way the spaces L") (Q) and W!"®)(Q). Moreover, all the above propositions have
analogous versions for these spaces and, besides, we have the following embedding Theorem
of Sobolev’s type.

Proposition &8 ([21, Theorems 1.1, 1.3]) Let @ C RN an open domain with the cone
property, h: Q — R satisfying 1 <h_ <hy < Nandm € L?ro(Q)

(1) If h is Lipschitz continuous and h < m < h*, the embedding Wl*h(")(Q) e [7M™) (Q)
is continuous,

(1) If Q is bounded, h is continuous and m < h*, the embedding w L) (Q) s LM (Q)
is compact.

3 An auxiliary problem

In this section, we work with an auxiliary problem adapting the ideas explored in del Pino
and Felmer [14] (see also [3]).
We start noting that the energy functional [, : E; — R associated with (P;L) is given by

h(u)=/ﬁ(|w|"(x’+(AV(x)+Z(x))|u|f’<x>)—/F(x,u),
RN RN

where E; = (E, | - ||) with

E=3ue Wl‘p(x)(]RN); /V(x)|u|p(") <oot,
RN

and

. u
lull, = inf [a ~0: o1 (;) < 1},

@ Springer



Quasilinear problems involving variable exponents 1569

being

05 (u) = / (|w|”(x) + (W) + Z(x))|u|p(x)) .
RN
Thus, E;, < W!P@(RV) continuously for A > 1 and E, is compactly embedded in

L;‘o(f) (RN), forall 1 < h < p*.In addition, we can show that E, is a reflexive space. Also,

being @ C RY an open set, from the relation

0r.0W) = / (1vul"™ + (V@ + Z0) ") = M/ ulP® = Moo W),

o o
3.1

forall u € E) with A > 1, writing M = (1 — 8)_1\), forsome 0 < § < landv > 0, we
derive
0x,0W) —vopw),0) = 805,0W), YuekE,, L>1. (3.2)

Remark 3.1 From the above commentaries, in this work the parameter A will be always
bigger than or equal to 1.

We recall that for any € > 0, the hypotheses (f1), (f2) and (fs) yield
F,t) <eltPON i) f™-1 vx e RN, 1 eR, (3.3)
and, consequently,
F(x, 1) < elt|P™) + Clr1™, vx e RV, 1 e R, (3.4)

where C, depends on €. Moreover, for each v > 0 fixed, the assumptions ( f2) and ( f3) allow
us considering the function a: RN — R given by

. Cfxa)
a(x) = min ‘a >0; Py vt. 3.5)
From (f2), it follows that
0<a_ = inf a(x). 3.6)
xeRN
Using the function a(x), we set the function f: RN x R — R given by
Fet) = f, 1), t <ax)
s PO > g(x)°
which fulfills the inequality
fe,0) <veP971 vx eRY r eR. (3.7)
Thus ~
fe, 08 <vlt]P®, vx e RN, 1 eR, (3.8)
and ~ .
F(x,t) < —|t|P™, vxeRVN,teR, (3.9)
px)

where F(x,1) = fot f(x,s)ds.
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1570 C. O. Alves, M. C. Ferreira

Now, once that = int V~1(0) is formed by k connected components 21, ..., Q with
dist(Qi, Qj) >0, i # j,thenforeach j € {1,..., k}, we are able to fix a smooth bounded
domain Q’] such that

Q;CQ; and QNQ; =0, fori#j. (3.10)
From now on, we fix a non-empty subset Y C {1, ..., k} and
1, ifx e
QT=UQj,Q/=UQ/‘aXT=[’ . N
jer ior 0, ifx ¢ QL.

Using the above notations, we set the functions

g, ) = xr @) fx. )+ (1= xr®) fx.0), (x.0) e RN xR

and

t
G(x,1) =/g(x,s)ds, (x,1) e RN x R,
0
and the auxiliary problem

(4) —Apmu 4+ (AV () + Z(0) [ulPO72u = g(x,u), inRY,
Yo u e whee mN),

The problem (A;,) is related to (P ) in the sense that, if uy, is a solution for (A;) verifying
u, (x) < a(x), Vx e RV \ Q%

then it is a solution for (PA).
In comparison with (P,\), problem (A )\) has the advantage that the energy functional
associated with (A ;L), namely, ¢, : E, — R given by

m(u)=/ﬁ(|Vu|"<”+(W(x)+z<x>)|u|"(“)—/G(x,u),
]RN ]RN

satisfies the (P S) condition, whereas [, does not necessarily satisfy this condition. In this
way, the mountain pass level (see Theorem 3.6) is a critical value for ¢, .

Proposition 3.2 ¢, satisfies the mountain pass geometry.

Proof From (3.4) and (3.9),

1 v
o) = p—gx(u)—e/|u|P<X’—ce/|u|‘f<“‘>—p—/|u|f’<x>,
* ]RN RN _]RN

for e > 0 and Cc > 0 be a constant depending on €. By (3.1), fixing € < % and v <

p—-M (i — ﬁ) and assuming ||u ||, < min{l, I/Cq},where vlg) < Cyllvlla, Yv € Ey,

we derive from Proposition 2.1

p q-
$1(u) = eflull; " = Cllull;",
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Quasilinear problems involving variable exponents 1571

— 1 € v .
where o = (ﬁ — M) - > 0. Once p; < g—, the first part of the mountain pass

geometry is satisfied. Now, fixing v € C§°(Q2y), we have for t > 0

(x)
¢x(zv)=/L(|W|P<x>+2(x))|v|"°‘>) —/F(x,rv>.

p(x)
RN RN

Ift > 1, by (f3),

7"

sre) = = [ (19079 + za)oir®) - i’ [ 1l - e,

- RN RN

and so,
¢ (tv) > —oco as 1 — +oo.

The last limit implies that ¢, verifies the second geometry of the mountain pass. O

Proposition 3.3 All (PS), sequences for ¢, are bounded in E).

Proof Let (u,) be a (PS)4 sequence for ¢,. So, there is ng € N such that

1
®5.(up) — 5¢i(un)un <d+ 1+ |luylln, forn > ng.

On the other hand, by (3.8) and (3.9)
- 1~ 1 1
Fx,t) — = fx,nt < | — — = ) v[t)P™, vx e RN, 1 €eR,
6 px) 0
which together with (3.2) gives

1 1 1
O (uy) — g(pi(un)un > (E — 5) 805 (un), Vn € N.

Hence

1 1
d + 1+ max {05 (un) /P~ 03(un)'/P+} > (— - =
p+ 0

from where it follows that (u,) is bounded in E}. ]

)Mx(un), Vn > ny,

Proposition 3.4 If (u,) is a (PS)q sequence for ¢, then given € > 0, there is R > 0 such
that

lim sup / (|wn|”°‘) + (Ve + Z(x))|u,,|p(x)) <e G.11)
! RV\BR(0)
Hence, once that g has a subcritical growth, if u € E, is the weak limit of (u,), then
/g(x, Up)ly dx — /g(x, wudx and /g(x, Uy)vdx — /g(x, u)vdx, Vv € E;.
RN RN RN RN
Proof Let (u,) be a (PS)y sequence for ¢, R > 0 large such that Q’T C B% (0) and
ng € C°(RV) satisfying

0, x € Br(0)
nR(x) :[ K ,
I, x € RN\Bx(0)
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1572 C. O. Alves, M. C. Ferreira

C
0<ng <1and |Vr]R’ < R where C > 0 does not depend on R. This way,

/ (190" + (V@) + Z@)hnl?)

RN

_2 ~
= ¢} (up) (Unng) — / |Vt P PV, - Vg + / Fx, un)unng.
RN RN\QY

Denoting
I= / (|wn|p"‘) + (V) + Z(x))|un|p(x)) .
RN

it follows from (3.8),

c —1
[ < ¢; (un) (MnUR)+E/|un||Vun|p(x) +V/|Mn|p(X)77R.
RN RN

Using Holder’s inequality 2.4 and Proposition 2.3, we derive

p——1
px) ’

Vu, p+_1} + LI.

C
1= 6} ) (@) + < ltnl sy ma {| Vi jemul R

Since (1) and (‘Vun |) are bounded in LP™ (RV) and > = 1 — 8, we obtain

/ (|wn|”“‘) + (V) + Z(x))|un|p(x)) < on(1) + %.

RM\BR(0)

Therefore

= O

lim sup / (IVaa " 4 (V0 + 20 ual7) =
n

RN\Bg(0)

C
So, given € > 0, choosing a R > 0 possibly still bigger, we have that z < €, which proves
(3.11). Now, we will show that

/g(X,Mn)Mn*/g(x,u)u.
RN

RN

Using the fact that g(x, u)u € LY(RN) together with (3.11) and Sobolev embeddings, given
€ > 0, we can choose R > 0 such that

lim sup / lg(x, up)uy| < 2 and / lg(x, wu| < -.

n—-+00
RN\ Bg(0) RN\ Bg(0)

I

On the other hand, since g has a subcritical growth, we have by compact embeddings

g(x, up)up — / g(x,u)u.

Br(0) Br(0)
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Quasilinear problems involving variable exponents 1573

Combining the above information, we conclude that
/ g(x, up)uy, — / glx, u)u.
RN RN

The same type of arguments works to prove that

/g(x,u,,)v—> /g(x,u)v Yv € E,.

RN RV

Proposition 3.5 ¢, verifies the (PS) condition.
Proof Let (u,) be a (PS)y4 sequence for ¢, and u € E; such that u, — u in E;. Thereby,
by Proposition 3.4,

/g(x,un)u,, — /g(x,u)u and /g(x,u,,)v — /g(x,u)v, Yv € E).
RN RN RN RN

Moreover, the weak limit also gives

/ |Vu|p(x)_2Vu -V, —u)—0

e
and
/ (AV (@) + Z@)) P 2uuy, — u) — 0.
v
Now, if
Pl(x) = (|W,,\”°‘)’2wn - \w\”()‘)*zvu) (Vi — V)
and
PR = (a7 2 = 11772 ey = w),
we derive
[ (Pl + v + 260) P20) = i+ [ et umnn = 85— [ gt
RN RN RN
—/ (ywy”(")*zw SVt — ) + (W () + Z060) 1] PD 2, — u)) .
i

Recalling that ¢} (u,)u, = 0,(1) and @ (u,)u = 0,(1), the above limits lead to

/ (P,} @) + (V) + Z(x))Pnz(x)) 0.

RN
Now, the conclusion follows as in [8]. O
Theorem 3.6 The problem (Ax) has a (nonnegative) solution, for all A > 1.

Proof The proof is an immediate consequence of the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz [10]. ]
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1574 C. O. Alves, M. C. Ferreira

4 The (P S)~ condition
A sequence (u,) C Whr™) (RN) is called a (P S)o sequence for the family (¢;.),> 1, if there
is a sequence (A,) C [1, oo0) with A,, — o0, as n — o0, verifying
¢, (up) — ¢ and ”qﬁin (un)H — 0, asn — oo.
Proposition 4.1 Let (u,) C WhP&) (RN) be a (PS)o sequence for (¢3);>1. Then, up to a
subsequence, there exists u € wlp@) (RN) such that u, — uin WP (RN). Furthermore,
(i) ox,wn —u) — 0and, consequently, u, — u in wlpt) (RN);

() u=0inRY \ Qv,u >0and Ujg, s j €Y, is a solution for

®) —Apott + ZO)uPO2u = f(x,u), inQj,
/ ueWOI"p(x)(Qj);

(i) / AV ()P > 0;
]RN

@) @30y ) > [ (19l + Zul? ™). or j € X
. o,
(V) 03, rM\@y (Un) > 0;

i) ¢y, (un) —>/ L(|w|"(")+2(x)|u|ﬁ<x>) —/ F(x, u).
Q

r P(X) Qr

Proof Using the same reasoning as in the proof of Proposition 3.3, we obtain that (Q)W (u,,))
is bounded in R. Then (||un ||,\n) is bounded in R and (u,) is bounded in W17 (]RN). So,
up to a subsequence, there exists u € W) (]RN ) such that

up —u in whHr® (RN) and u,(x) > u(x) forae.x e RY.

1
Now, for each m € N, we define C,,, = {x € RV ; V(x) > — }. Without loss of generality,
m

we can assume A, < 2(A, — 1), Vn € N. Thus

2m 2m C
/|un|f’<x> < —/ (A V() + Z)) un P < T=01, (un) < —.
g An g An An

By Fatou’s lemma, we derive
Jure <o,
CWI

which implies that u = 0 in C,, and, consequently, # = 0 in RN \5. From this, we are able
to prove (i) — (vi).

(i) Since u = 0in RY \ Q, repeating the argument explored in Proposition 3.5 we get
/ (P,} @) + (A V(x) + Z(x))Pnz(x)) -0,
RN
where

Pl(x) = (|Vun|”"‘)’2w,, _ \w\”()‘)*zvu) (Vi — Vi)
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Quasilinear problems involving variable exponents 1575

(i)

(iii)

(iv)

and
P20 = (Il 2 = 1720 ) (= ),
Therefore, 0y, (4, — u) — 0, which implies u,, — u in lel’(x)(RN).
Sinceu € WP (RV) andu = 0in RN\ Q, we have u € WO1 P () or, equivalently,

ulg, € Wol’p(x) (Q;), for j = 1,..., k. Moreover, the limit u, — u in WP (RN)
combined with ¢} (u,)¢ — 0 for ¢ € C§° (£2;) implies that

J (97700 Vo 20 ) - [ ge =0, @
2 £
showing that Ulg, is a solution for
—Apyt + ZE)u|PD U = g(x, u), in Q;j,
ue Wol”’(")(Qj).
This way, if j € Y, then Ujg, satisfies (P;). On the other hand, if j ¢ Y, we must have
/ (|Vu|p(x) + Z(x)lulp(x)) _ / f(x, w)u = 0.
Q) Q;
The above equality combined with (3.8) and (3.2) gives
0> 05,0, —vopu)a;@) = 8oxq; 1) =0,

from where it follows Ulg, = 0. This proves u = 0 outside Qv and u# > 0 in RN,
It follows from (i), since

/AnV(x)an’(” = /xnwxnun —ul”™ <205, (uy — u).
RN RN
Let j € Y. From (i),
Op). @, (tn = 1), Qpr). 2, (Vup — Vu) — 0.
Then by Proposition 2.5,

/(|w,,|”(“‘) —|vu|/’™) >0 and /Z(x)(lu,1|”(x) — [u|P®) — 0.

/ /
Qj Qj

From (iii),
/AnV(x>(|un|P<” — |u|P™) = / 2V () 1| 0,
2 2\e;

This way

01,.9 (un) — 1,2, (u) — 0.
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Once u = 0in Q' \ Q;, we get

03,2, (Un) = / (qu|”(x) + Z(x)|u|P<X)) .
Q:

J
(v) By (i), o, (un —u) — 0, and so,

O, RV \Qy (Un) = 0.
(vi) We can write the functional ¢, in the following way

1
b =3 |
ety

p(x)

(198" + (V@) + Z0) a0

/ ﬁ (IVata| "+ GV (0) + Z0)) a7 —/G(x,un)-
RV\Q, =

From (i) — (v),

/ : (|wn|”“"+(an<x>+Z<x>)|un|f’<x>)

px)
ol
1 X
1 X
/ px) (’Vu,,‘ﬁ( )y (A V(x) + Z(x))|un|p(x)) 0
RN\Q
and
/G(x, un) — / F(x’ M).
RN Oy
Therefore
¢)~n(un) - / ﬁ (|VM|17(X) +Z(x)|u|p(x)) _ / Fx.u).
Qr J

5 The boundedness of the (A, ) solutions

In this section, we study the boundedness outside Q’T for some solutions of (A ,\). To this
end, we adapt for our problem arguments found in [18] and [25].

Proposition 5.1 Let (uk) be a family of solutions for (AA) suchthatu, — 0in WH P (RN \
QT), as A — o0. Then, there exists A* > O with the following property:

|M)M|OO,RN\Q/Y <a_, A8 > )\.*
Hence, u,_ is a solution for (Py) for . > A*.

Before to prove the above proposition, we need to show some technical lemmas.
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Lemma 5.2 There exist x{,...,x; € GQ’T and corresponding 8y, . .., 8y, > 0 such that
l
0Qy c N (02y) == Bay (30).
i=1

Moreover,
Xj

ai = (pY)", (5.1)
where

Xi X; . X\ k¥
"= su , pt = inf and (p!) = ——.
o Bax.g,-)q i Bay, o (v) N - pZ

Proof From (3.10), Qy C Q. So, there is § > 0 such that
Bs(x) C RN\ Qy, Vx € 99

Once ¢ < p*, there exists € > 0 such that ¢ < p*(y) — ¢(y), for all y € RV, Then, by
continuity, for each x € 8Q’T, we can choose a sufficiently small 0 < §, < § such that

at < (ph)",
where
Np*
N — p*’

gy = sup g, pL = inf pand (pf)* =
Bs, (x) By (x)

Covering 9Q/. by the balls By, (x), x € 9Q), and using its compactness, there are
2
X1, ..., x € 9Q% such that

1
99y c | Bsy, (xi).
i=1 7

m}

Lemma 5.3 If u, is a solution for (A;L), in each Bs,. (xi), i = 1,...,1, given by Lemma
5.2, it is fulfilled

‘V”*’pii = C| (K +2)[A5, ]+ (5_3)_(pﬁ) / (uy, —k)("*')* :

Akix,- Ak.S_x,»

o~ a—
where 0 < § < § < 6y, k > —,C = C(p_,p+,q_,q+,v, Sx,.) > 0 is a constant
independent of k, and for any R > 0, we denote by Ay R x; the set

Ak kx, = Br(xi) N {x eRY; u;(x) > k} .
Proof We choose arbitrarily 0 < § < 8§ < 8, and £ € C*(R") with

2
0<é&<1, supp& C Bj(x;), £ = 1in Bg(x;) and |VE| < =

For k > %, we define n = £P+ (u;, — k)*. We notice that

Vi = p+&P N, — k)VE + EP+Vuy,
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1578 C. O. Alves, M. C. Ferreira

on the set {u; > k}. Then, writing #; = u and taking 7 as a test function, we obtain

P

Ak,g,x,' Ak,g.,\'[

+ / (AV () + Z@)uP O P+ (u — k) = / g (e, WEPH (u — k).

Ak,g‘xi Ak,g,xl-

If we set

J = / £+ V| P,

Ak,g.xi
using that v < AV (x) + Z(x), Vx € RY, we get

J<ps / g7+~ — k)| Vu | ve]

Ak,& X
/ vuP O 1ePe(u — k) + / g(x, WEPH (u — k).
Ak,g,xl- Ak,g,xi

From (5.2), (3.3) and (3.7),

J < ps / E”_l(u - k)‘Vu‘p(xFlWE‘ _ / Wp(x)—lsm(u —k

Ak,g,xi Ak,g,xi
n / (PO 4 Cout NP (o — ),
Ak,g,xl‘

from where it follows
J<ps / P — ko) |Vu|" ! ve| + ¢, / WO — k).
Ak,g,,\l- Ak.g.xl-

Using Young’s inequality, we obtain, for x € (0, 1),

_ p_ p 2\ PW)
g PP =D gs 2 e / (z ’j)

p- . 5—35
Ak,& X
(O =D [ g, Co(L48) / (” - k)"(x)
q- q- 5§—36 '
Ak'g-xi Ak 5,,\‘[-

Writing
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for x ~ 0T fixed, due to (5.1), we deduce

Cy2%+ (g4 — 1) (1+8%1) (
q—

Cy2% (g4 — 1) (1 + k9+) Cy (1+8%)

+ 7 A5 ] .

J < EJ 4 p”* 1 (|As.] + Q) + A5+ 0)

(|Ak,§,x; | + Q)
Therefore
[ 1wl <0 = e 4 1) A, |+ 0],
Ak,g.xi
for a positive constant C = C(p_, P+>q—s G+, Vs (le.) which does not depend on k. Since
Vul™ =1 < [Vul", vx € By, (),
we obtain

[Vul” < [k + 1) A5 |+ Q] + [ A5 |

Ak,S,X[
sc|wr+2)ag,l+6-9 ) [ w-pb |,
Ak,é X;
for a positive constant C = C(p,, P+,q—, G+, V, (Sx,,) which does not depend on k. O

The next lemma can be found at ([27, Lemma 4.7]).
Lemma 5.4 Let (J,,) be a sequence of nonnegative numbers satisfying
Jop1 <CB"JM n=0,1,2,...,
where C,n > 0and B > 1. If
1 1
Jo<C "B *,
then J, — 0, as n — oo.

Lemma 5.5 Let (u)\) be a family of solutions for (A)\) such that uy, — 0 in WhHP&) (IRN \
QT), as A — oo. Then, there exists A* > O with the following property:

|”}»|oo,./\f(8$21r) <a_, VA > AE.

Proof It is enough to prove the inequality in each ball Bs,, (x;), i = 1,...,[, given by
=
Lemma 5.2. We set

g 8)(,‘ 8)(,‘ < ’gn +En+1 a— 1
5n22+2n+1,8n: ,kn:— 1_W ,Vn:O,1,2,....

Then
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1580 C. O. Alves, M. C. Ferreira

From now on, we fix

i

T = J, = / (uk(x)—kn)(p’),n=0,1,2,....

Akn o X

and & € C! (R) such that

N

, and &(t) =0, forr >

N —

0<é=<l1, &@) =1, fort =<

Setting

2n+l Sy
sn(x>=s(5 (Ix—xl- —7‘)), xeRY, n=01.2...,
X

i

we have &, = 1 in Bgn+I (x;) and &, = 0 outside Bs, (x;i). Writing u; = u, we get

Jnt1 < / ((u(x)—kn+1)é§n(x))(pj)

Aty 1 Bni

_ / (0 = ks 080 () ()

Bsy, (xi)

<C(N,pY) / \V((u—km)*sn)(x)!”fi

5y, (Xi)

sewr)| [l [ ke val”

Akn+1 Bnj Akn+1 Snx
Since
|VE, ()| < C(8y,)2" !, ¥x e RV,

»

.
. n ~ .
writing ‘]n(-i—l ) = Jy+1, we obtain

Tarr =C(N.pY,8,) / [Val~ + 2= / (= k)"

A1 Fn.x; Abri1 nx;

@ Springer



Quasilinear problems involving variable exponents 1581

Using Lemma 5.3,
-;;H-l = C(N, pfv Sxi) ( (kZL + 2) |Akn+|,§,,,x,- |

n+3 P ' xi\* o -
* (2;. )( ) / (u _kn+1)(p7) +2"7- / (u _k'”rl)pl)

K180 Akn+1 B
X q+ ~
= C(Nv p_, Sx,-) ( (kn+1 + 2) |Akn+|,5n,x,' |

L) / (u—kn+1)<”fi)*+2"l’x—" / (u—k,m)l’x—").

Akn+1-;§n-xi A"n+1-§n-xi

From Young’s inequality

X;

/ (u— kn-H)pi[ = C(p)ﬁ) |Akn+]~§n,)€i} + / (u— kn+l)(p7)

A1 5 Ap 5
Kn1:0n.%; Kp4-1:8n %

Thus

i

~ . —\¢ Xi * Xi
oz et (((5) +2 52 Y n 20 g srt).

Now, since

L\ *
X

- / (u—kn>(”l—i)*z(kn+1—kn>(”-) | Ay

n+1,0n,%i

A ~
Kn1.0n.%;

it follows that

Xi

i\ ()
il = (5)

a_

and so,

X i

Juyl < C(N, P8y, a, q+) (2"(”*) I + 2"(”ii+(”ii) )Jn—i—z"(”*) I, 420 Jn) .
Fixing & = (p™ + (p)"), it follows that

I\

o= —-—
i i

bt = C(NpY Sgsamige) [20 7 | g T

and consequently

Jus1 < CB"J1HN,
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i

a(p;.)* (pxi)*
where C = C(N, pf",le.,a_,qu),B =2 7 and n = # — 1. Now, once that

u;, — 0in whr® (RN \ Qy), as A — 00, there exists A; > 0 such that

/ (uk_‘l)(pj) ) SCTTBTE, Az

Aa_
T's"i JXj

From Lemma 5.4, J,(A) — 0,n — oo, forall A > A;, and so,

u) < % <a-, in By, , forall A > A;.
2

Now, taking A* = max{Ay, ..., A;}, we conclude that
|u)»|oo,/\/’(3Q’Y) <a_, VA > A%
[m}

Proof of Proposition 5.1 Fix A > A*, where A* is given at Lemma 5.5, and define ity : RV \
Q% — R given by

i (x) = (uy, —a-)* (x).

From Lemma 5.5, u;, € Wol’p(x) (RN \ Q). Our goal is showing that &5 = 0in RV \ Q.
This implies

|M)L|OO,RN\Q/T <a-_.
In fact, extending u; = 0 in Q’T and taking u, as a test function, we obtain
/ |Vu | Vs - Vi, + / AWV @) + Z@))ul O w0, = / ¢ (%, u3) Ty
RV\Q,. RM\ Q) RN\Q)
Since

/ ‘Vu”ﬁ(x)fzvuA Vi), = / |Vﬁ;\‘pm,

RN\ @/, RN\QY,
/ (AWV @) + Z00))ul w0, = / (AW @) + Z))ul V7 @)+ a) iy
]RN\Q’T (]RN\Q/Y)Jr
and
~ gx,up) -
g (x,up)uy = T(M,\-i-a—)ux,
A
]RN\QQr (RN\Q/T)+
where
(RN \ Q/T)+ = {x eRV\ Q4 up (x) > a_},
we derive
~ — X, U ~ ~
/ Vi, [P + / ((W(x) +Z00))ul 77 %) (it +a-) i, =0,
A
]RN\Q’T (]RN\Q’T)Jr
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Now, by (3.7),

X, u _ F(x,u
g (x,uy) >vu§(x) 2 f(xup)

(AWV(x) + Z(x))ul 72 -
u up

>0 in (RN\Q’T)+

This form, #; = 0 in (R \ Qif)+ Obviously, #; = 0 at the points where u) < a_,
consequently, i, = 0in RV \ Q.

6 A special critical value for ¢,

Foreach j =1, ..., k, consider

Ij(u) = / e (|v P +Z(x)|u|”(x)) /F(x,u), we Wy"Y(R)),

Qj Qj

the energy functional associated to (P;), and
$1. () = (IVa]™ + (V0 + Z) P @) = [ Feow, we whr (),
(X ) j
Q) @,
the energy functional associated to

—Apmu + ()LV(X) + Z(x))|u|p(x)72u = f(x,u), in Q’j,
g—g =0, on 9.

It is fulfilled that /; and ¢, ; satisfy the mountain pass geometry and let

= inf Ii(y(t d = f t
cj = ylélr max I i(y@®) and ¢, j = ygﬁ max ¢.j (v (@),

their respective mountain pass levels, where
rj={rec(io. 1. W™ ())): y(©0) =0and 1;(y(1)) <0}
and

T = {y c c([o 1, Whew (g )) y(0) = 0and ¢, ; (y(1)) < 0}

Invoking the (PS) condition on ; and ¢ ;, we ensure that there exist w; € W1 () (2)
and w; ; € Whr® (Q’) such that

Ij(wj) = c; and Ij(w;) =0
and
(W) = cij and ¢ ;(ws ;) = 0.
Lemma 6.1 There holds that

@D O0<cpj<cj,VA=1Vje(l,... .k}
(i) cp,j — cj, ash — 00, Vje{l,... k}
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Proof (i) Once Wol’p(x)(Qj) c whr®) (Q//) and ¢ j(y (1)) = 1;(y (1)) fory € T'j, we
have I'; C Iy ;. This way '

Cy i = lnf max : t < lnf max . t — lnf max I : ¢ —c:
h yerk,jte[o,um’/(ﬂ ) = yel; relo,ud)“(y( ) yer; tef0.1] iy ) =c¢

(i) It suffices to show that ¢y, ; — cj, asn — oo, for all sequences (A;) in [1, c0)
with 4, — oo, asn — o00. Let (A,) be such a sequence and consider an arbitrary
subsequence of (c;, ;) (not relabeled) . Let w, € W'»®) (Q;) with

$3,,j(wn) = cy,,j and qb;%j (wn) =0.

By the previous item, (c;,,, ;) is bounded. Then, there exists (wy, ) subsequence of (w,)
such that ¢y, (wn k) converges and qb;wk j (wnk) = 0. Now, repeating the same type of

arguments explored in the proof of Proposition 4.1, there is w € Wol’p @ (2 j) \ {0} C

whr) (Q’]) such that
Wy, — w in W]’p(")(Q’j), as k — oo.
Furthermore, we also can prove that
Crngj = Oinger (W) — 1 (w)
and
0= ¢;»nk,j (wne) = 1} (w).
Then, by (f4).
H,fnc)‘nkJ > Cj.
The last inequality together with item (i) implies
Chyrj — Cj» aSk — 00.

This establishes the asserted result.

O
In the sequel, let R > 1 verifying
0<1I; (%wj),lj(ij)<Cj, forj=1,...,k. (6.1)
There holds that
cj = te[?}%,l]lj(tij)’ forj=1,... k.

Moreover, to simplify the notation, we rename the components €2; of €2 in way such that
T =1{1,2,...,1} forsome 1 <[ < k. Then, we define:

1
yolti, ... t)(x) = D tjRw;(x), V(11 ..., 1) € [1/R* 11,
j=1

re={y e c/R 11, B\ (0): v = yoon ol1/R%, 1T
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and

b, v = inf max Oy, ..., 1)).
’ y€lw (11,....1))€[1/R2, 1] ( )

Next, our intention is proving that by v is a critical value for ¢, . However, to do this, we
need to some technical lemmas. The arguments used are the same found in [3]; however, for
reader’s convenience, we will repeat their proofs

Lemma 6.2 Forall y € T, there exists (s1,...,5]) € [1/R2, 11 such that
¢ (st D) (yGsi,...,8)) =0, Vje.
Proof Giveny € I'y, consider 7: [1/R?, 1] — R' such that
7O = (671 (1 ®)7®. ... 9L, (y®)7(®), where t= (11, ).

For t € 8[1/R?, 11, it holds 7(t) = 7o(t). From this, we observe that there is no t €
a[1/R?, 1] with ¥ (t) = 0. Indeed, for any j € T,
¢>i,j()/o(t))1/0(t) = If(lijj)(lijj)-
This form, if t € 3[1/R2, 1]’, thentj, = lortj, = ﬁ, for some jy € Y. Consequently,
1

1
b5 5 (o®) () = I (Rwj))(Rwjy) or ¢} i (vo(®)yo(t) = I, (ij") (ijo) .

Therefore, if ¢} ; (yo(H)yo(t) = 0, we get Ijy(Rwj,) > cj, or Ijy (gwj) = ¢y, which is
a contradiction with (6.1).
Now, we compute the degree deg (¥, (1/R%, 1), (0, ...,0)). Since

deg (7, (1/R*, D', (0,...,0)) = deg (%0, (1/R*, 1), (0, ..., 0)),

and, fort € (1/R?, 1)/,

~ 1 1
wit) =0 <— tZ(—,...,—),

R R
we derive
deg (7, (1/R*, D', (0,...,0)) #0.
This shows what was stated. O
I l
Proposition 6.3 Ifc, vy = ZC’W and ¢y = Zc‘,-, then
j=1 j=1

(i) iy <byy <cy,VAx>1;
(i) byy — cr, as A — oo,
(i) pa(y®) <cy, VA= 1,y €eTyandt=(11,...,1) € d[1/R* 1.

Proof (i) Once yy € Iy,

i
by < max o (vo(tr, ..., 1)) = max Ii(tiRw;) =c~.
(t1,..t)el1/R2, 1] ( ) (t1..o1)€[1/R%, 1) JZZ} S
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Now, fixing s = (s, ..., s;) € [1/R?, 1] given in Lemma 6.2 and recalling that
oy = inf {0 0 € WP () \ 10) and 6, o = 0}
it follows that
$.,j(¥(®) =cnj, Vj €.
From (3.9),
$rrvva, (W) = 0, Vu e WP RN\ QY ),

which leads to
I
$r(y®) = D i (y®), Y= (1,....0) e [1/R* 1]

j=1
Thus

max i (vt .... 1) = da(v(s) = e,
(f15eees tl)e[l/RQ,l]l

showing that
bix = caxs

(it) This limit is clear by the previous item, since we already know ¢, ; — cj,as A — 00;
(ili) Fort = (t1,...,#) € d[1/R?, 11, it holds y (t) = y(t). From this,

1
¢ (y(®©) = D1t Rw)).
Jj=1

Writing
l
¢ (y(®) = D 1t Rw)) + Ly (1, Rwjy),

j=1
J#io

where ¢}, € {%, 1}, from (6.1) we derive

$r(y®) <ecx —e,

for some € > 0, so (iii).

Corollary 6.4 b, v is a critical value of ¢,, for A sufficiently large.

Proof Assume by,  is not a critical value of ¢ for some . We will prove that exists A1 such
that A < ;. Indeed, by item (iii) of Proposition 6.3, we have seen that

o1 (vo®) <oy, VA =1, te d[1/R* 11
This way

M= max ¢5(p)) <cry.
ted[1/R2 1] ,\(J/ )
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Since by v — ¢ (item (ii) of Proposition 6.3), there exists A1 > 1 such thatif A > Ay, then
M < by .
So, if x > Ay, we can find T = 7(X) > 0 small enough, with the ensuing property
M < by =2t (6.2)

From the deformation’s lemma [31, Page 38], there is n: E, — E) such that

by b5~
n (o7 7) o and nGo) = u, foru ¢ ¢ (b — 27 by y +27)),

Then, by (6.2),
1(yo(®) = yo(t), Yt € 3[1/R*, 11

Now, using the definition of by ., there exists y; € I'y satisfying

max t) <bs 4+t 6.3
omax | o ®) < brx 6.3)

Defining
7® =n(r®), tell/R 11,
due to (6.3), we obtain
¢ (V1) < by — 1, Vte [1/R* 1]
But since y € Iy, we deduce

byy = max

y(t) < by~ — T,
te[1/R ,1]’¢X(y( ) = by

a contradiction. So, x < Al ]

7 The proof of the main theorem

To prove Theorem 1.1, we need to find nonnegative solutions u, for large values of A, which
converges to a least energy solution in each €2; (j € T) and to 0 in Q. as A — oo. To this
end, we will show two propositions which together with the Propositions 4.1 and 5.1 will
imply that Theorem 1.1 holds.

Henceforth, we denote by

l -1
Z 11
r:RP+ /=1 (E_g) Cj? B?:{MEE)J Q)\(M)Er}
and
¢ " ={u e Ey; pr(u) <cr}.

Moreover, for small values of w,

A ={ue Bl 0y avia, ) < 1, |di @) —cj] < p, VjeT).
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We observe that
I
w= ij € Aﬁﬂq&?,
Jj=1

showing that A7, N ¢} # §. Fixing
.
O<M<ernellr“lcj’ (7.1)

we have the following uniform estimate of H ) H on the region (A%‘ " \ Aﬁ) N ¢KT.

Proposition 7.1 Let i > O satisfying (7.1). Then, there exist A > 1 and oy > 0independent
of A such that

[0l = 00, for 1= A andall ue (A5, \ AL) N5 (7.2)

Proof We assume that there exist A, — oo and u, € (Aé;l \ Aﬁ”) N ¢;: such that

|3, @] = o.

Since u, € .A;‘Z, this implies (Q}w (u,,)) is a bounded sequence and, consequently, it follows
that (¢/\n (u,l)) is also bounded. Thus, passing a subsequence if necessary, we can assume

¢d», (u,) converges. Thus, from Proposition 4.1, there exists 0 < u € Wl’p(x) Q) such that
n g p 0
U, J € T, is a solution for (P;),

0, RN\ Qv (up) — 0 and ¢y, j(uy) — I;j(u).

We know that c; is the least energy level for /;. So, if Ulg, # 0, then /;(u) > c;. But since
@y, (up) < cy, we must analyze the following possibilitiés:

(i) Ijw)=cj, VjeT;
(it) Ij,(u) =0, for some j, € T.

If (i) occurs, then for n large, it holds
an,RN\QT(u11) <u and |¢A,,,j(un) - Cj| <u,VjeT.

Sou, € Af}", a contradiction.
If (i1) occurs, then

|Br.jo Un) = Cjo| = cjo > 411,
which is a contradiction with the fact that u,, € Ag; Thus, we have completed the proof. O

Proposition 7.2 Let i > 0 satisfying (7.1) and A, > 1 given in the previous proposition.

Then, for A > A, there exists a solution u)_of (A,) such that u, € Ail N ¢;Y.

Proof Let A > A,. Assume that there are no critical points of ¢, in A;\L N ¢§;T. Since ¢, is a
(P S) functional, there exists a constant dj > 0 such that

”‘ﬁi(u)w >d,, forallu e Aﬁ m¢j\'T_
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From Proposition 7.1, we have

H¢;\(M)” > o0y, forallu e (Aéﬂ \Aﬁ) m(p;T’

where ¢ > 0 does not depend on A. In what follows, W: E; — Ris a continuous functional
verifying

W) =1, foru € A)\M, W(u) =0, foru ¢ A5, and 0 < W(u) <1, Vu € Ej.
2
We also consider H: ¢;* — E; given by

-1
H) = —V@)||Y @] Y@, forue A%H,
0, foru ¢ A3,.

where Y is a pseudo-gradient vector field for ; on £ = {u e E;; ¢i (u) #£ 0}. Observe
that H is well defined, once ¢:\ (u) #0,foru € A’Q\u N ¢;Y. The inequality

|H@| <1, VA > A, and u e )",

guarantees that the deformation flow 1: [0, 00) x ¢;* — ¢, " defined by

d’l cYy
E = H(’?)» 77(0»”) =uc€ ¢}\
verifies
d 1 ,
S0 (0 w) = =59 (@, w) |9 (0, w) | <0, (1.3)
Hdl — @], <1 (7.4)
dt ||, A '
and
n(t,u) =uforallr > 0and u € ¢ \ A5, (7.5)

We study now two paths, which are relevant for what follows:
e The path t > n(, y(t)), where t = (11,...,1) € [1/R? 1]
The definition of )y combined with the condition on u gives

o) ¢ Ab,. Ve e d[1/R* 1]
Since
¢ (W) < cr. Ve e d[1/R* 11,
from (7.5), it follows that
n(t. vo(®) = yo(t), Vt € 3[1/R*, 11

So, n(t, yo(t)) € Ty, for each 1 > 0.
e The path t — yp(t), wheret = (¢1,...,1) € [1/R2, 11
‘We observe that

supp(yo(t)) C Qy
and

b (yo (t)) does not depend on A > 1,
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forall t € [1/R?, 1]'. Moreover,
$1(vo(®) < e, Ve [1/R?, 1
and
¢>A(y0(t)) =cyif, and onlyif, t; = %, VjeT.
Therefore
mo = sup {600 s w € yo([1/R% 1) \ A%
is independent of A and mg < cy. Now, observing that there exists K, > 0 such that
|pn.j () — daj (V)| < Killu — vlixg,, Yu,v € BrandVj e Y,

we derive

max ¢, (n(T, yo(t))) < max [mo, e

UOM] , (7.6)
te[l/R2,1]

2K,

for T > 0 large.
In fact, writing u = yo(t), t € [1/R?, 11", if u ¢ A%, from (7.3),

¢ (n(t, w)) < ¢(u) <mo, Vi >0,
and we have nothing more to do. We assume then u € Aﬁ and set

o0l

7(t) = n(t, u), d, = min{d,, o0} and T = = .
n@) =n,u), d {dy., o0} K4,

Now, we will analyze the ensuing cases:

Case 1: 5)(t) € A*M, vt € [0, T].
2
Case 2: 77(tg) € BA%;M, for some 1o € [0, T].
2

Analysis of Case 1 _
In this case, we have W (ﬁ(t)) =1 and ||¢§\ (ﬁ(z)) H > d, for all ¢t € [0, T]. Hence, from
(7.3),

T T
¢ (0(T)) = da(u) + / %«m (7(s))ds < cy — %/JA ds,
0 0

that is,

6.(1(T)) < ey — lde =cy — ! oo,

2 2K,

showing (7.6).
Analysis of Case 2

In this case, there exist 0 < 7; < t, < T satisfying

() € DAL,
() € 0A%
M
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and
() € Agﬂ \ A, Vi € (11, 12].
2

We claim that

- _ 1
|2 = 7)) || = SE

Setting w1 = 7(t1) and wy = 7(t2), we get
3 3
Qx N \oy (W2) = S 4 or 3., jo (w2) — ¢jy| = e

for some jy € Y. We analyze the latter situation, once that the other one follows the same
reasoning. From the definition of .Ai‘“

b2 jo (WD) — cjo| < 12,

consequently,

1
lwz —will = F|¢A,jo(w2) = jow))| = K.
*

2K,
Then, by mean value theorem, f, — #; > iu and, this form,

T

¢ (7(T)) < ps(u) — / (7)) [ 5. (7)) | ds

0
implying

)

.(N(T)) < ey — /Gods =cy —op( — 1) < ey —

3l

ooM,
2K, oM

which proves 7.6. Fixing 7(t1, ..., 1) = n(T, v, ..., tl)), we have that 7 € 'y and,
hence,

2K,

(t1,...t)€[1/R2,1]

bur < max ¢ (A, ..., 1)) < max [mo, ey —
which contradicts the fact that b, v — cv. O

Proof of Theorem 1.1 According Proposition 7.2, for u satisfying (7.1) and A, > 1, there
exists a solution u; for (Aj) such that u) € Aﬁ N ¢;T, forall A > A..
Claim: There are Ay > A, and o > 0 small enough, such that u; is a solution for (P;L) for
A > Agand u € (0, o).

Indeed, assume by contradiction that there are A, — oo and w,, — 0, such that (u;,,) is
not a solution for (P, ). From Proposition 7.2, the sequence (u;,,) verifies:

@) ¢ (up,) =0,VneN;
(®) 05, rV\ay (2,) = 0;
(©) ¢s,ju,) — cj, VjeT.
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The item (b) ensures we can use Proposition 5.1 to deduce u,, is a solution for (P;w), for
large values of n, which is a contradiction, showing this way the claim.

Now, our goal is to prove the second part of the theorem. To this end, let (u;,) be a
sequence verifying the above limits. Since ¢, (3, ) is bounded, passing a subsequence, we
obtain that ¢, (u5,) — c. This way, using Proposition 4.1 combined with item (c), we derive
u;, converges in Wil (]RN ) to a functionu € WP (]RN ), which satisfies © = 0 outside
Qv and Ug, J € T, is aleast energy solution for

—Apyut + Z(x)u = f(u), inRQ;,
we Wy (), u=0, ing;.
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