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Abstract We establish the existence of multi-bump solutions for the following class of
quasilinear problems

−�p(x)u + (λV (x) + Z(x)
)
u p(x)−1 = f (x, u) in R

N , u ≥ 0 in R
N ,

where the nonlinearity f : RN ×R → R is a continuous function having a subcritical growth
and potentials V, Z : RN → R are continuous functions verifying some hypotheses. The
main tool used is the variational method.

Keywords Variational Methods · Positive solutions · Asymptotic behavior of solutions ·
p(x)-Laplacian

Mathematics Subject Classification (2000) 35A15 · 35B09 · 35B40 · 35H30

1 Introduction

In this paper, we consider the existence and multiplicity of solutions for the following class
of problems
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1564 C. O. Alves, M. C. Ferreira

(
Pλ

)

⎧
⎪⎨

⎪⎩

−�p(x)u + (λV (x) + Z(x)
)
u p(x)−1 = f (x, u), in R

N ,

u ≥ 0, in R
N ,

u ∈ W 1,p(x)
(
R
N
)
,

where �p(x) is the p(x)-Laplacian operator given by

�p(x)u = div
(∣
∣∇u

∣
∣p(x)−2∇u

)
.

Here, λ > 0 is a parameter, p : RN → R is a Lipschitz function, V, Z : RN → R are
continuous functions with V ≥ 0, and f : RN × R → R is continuous having a subcritical
growth. Furthermore, we take into account the following set of hypotheses:

(H1) 1 < p− = inf
RN

p ≤ p+ = sup
RN

p < N .

(H2) � = int V−1(0) �= ∅ and bounded, � = V−1(0) and � can be decomposed in k
connected components �1, . . . , �k with dist

(
�i ,� j

)
> 0, i �= j .

(H3) There exists M > 0 such that

λV (x) + Z(x) ≥ M, ∀x ∈ R
N , λ ≥ 1.

(H4) There exists K > 0 such that
∣∣Z(x)

∣∣ ≤ K , ∀x ∈ R
N .

( f1)

lim sup
|t |→∞

| f (x, t)|
|t |q(x)−1

< ∞, uniformly in x ∈ R
N ,

where q : RN → R is continuous with p+ < q− and q � p∗ = Np
N−p . Here, the

notation q � p∗ means that inf
RN

(p∗ − q) > 0.

( f2) f (x, t) = o
(|t |p+−1

)
, t → 0, uniformly in x ∈ R

N .
( f3) There exists θ > p+ such that

0 < θF(x, t) ≤ f (x, t)t, ∀x ∈ R
N , t > 0,

where F(x, t) = ∫ t0 f (x, s) ds.

( f4)
f (x, t)

t p+−1 is strictly increasing in t ∈ (0,∞), for each x ∈ R
N .

( f5) ∀a, b ∈ R, a < b, sup
x∈RN

t∈[a,b]

| f (x, t)| < ∞.

A typical example of nonlinearity verifying ( f1) − ( f5) is

f (x, t) = |t |q(x)−2t, ∀ x ∈ R
N and ∀t ∈ R,

where p+ < q− and q � p∗.
Partial differential equations involving the p(x)-Laplacian arise, for instance, as a math-

ematical model for problems involving electrorheological fluids and image restorations, see
[1,2,11–13,29]. This explains the intense research on this subject in the last decades. A lot
of works, mainly treating nonlinearities with subcritical growth, are available (see [4–9,16–
18,20–24,28] for interesting works). Nevertheless, to the best of the author’s knowledge, this
is the first work dealing with multi-bump solutions for this class of problems.
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Quasilinear problems involving variable exponents 1565

The motivation to investigate problem
(
Pλ

)
in the setting of variable exponents has been

the papers [3] and [15]. In [15], inspired by del Pino and Felmer [14] and Séré [30], the
authors considered

(
Pλ

)
for p = 2 and f (u) = uq , q ∈ (1, N+2

N−2

)
if N ≥ 3; q ∈ (1,∞) if

N = 1, 2. The authors showed that
(
Pλ

)
has at least 2k − 1 solutions uλ for large values of

λ. More precisely, one solution for each non-empty subset ϒ of {1, . . . , k}. Moreover, fixed
ϒ ⊂ {1, . . . , k}, it was proved that, for any sequence λn → ∞, we can extract a subsequence
(λni ) such that (uλni

) converges strongly in H1
(
R
N
)
to a function u, which satisfies u = 0

outside �ϒ =⋃ j∈ϒ � j and u|� j
, j ∈ ϒ is a least energy solution for

{
−�u + Z(x)u = uq , in � j ,

u ∈ H1
0

(
� j
)
, u > 0, in � j .

In [3], employing some different arguments than those used in [15], Alves extended the
results described above to the p-Laplacian operator, assuming that in

(
Pλ

)
the nonlinearity f

possesses a subcritical growth and 2 ≤ p < N . In particular, fixed ϒ ⊂ {1, . . . , k}, for any
sequence λn → ∞, we can extract a subsequence (λni ) such that (uλni

) converges strongly

in W 1,p
(
R
N
)
to a function u, which satisfies u = 0 outside �ϒ and u|� j

, j ∈ ϒ , is a least
energy solution for

{
−�pu + Z(x)u = f (u), in � j ,

u ∈ W 1,p
0

(
� j
)
, u > 0, in � j .

In the present paper, we extend the results found in [3] to the p(x)-Laplacian operator.
However, we would like to emphasize that in a lot of estimates, we have used different
arguments from that found in [3]. The main difference is related to the fact that for equations
involving the p(x)-Laplacian operator it is not clear that Moser’s iteration method is a good
tool to get the estimates for the L∞-norm. Here, we adapt some ideas explored in [18] and
[25] to get these estimates. For more details see Sect. 5.

Since we intend to find nonnegative solutions, throughout this paper, we replace f by
f + : RN × R → R given by

f +(x, t) =
{
f (x, t), if t > 0

0, if t ≤ 0.

Nevertheless, for the sake of simplicity, we still write f instead of f +.
The main theorem in this paper is the following:

Theorem 1.1 Assume that (H1) − (H4) and ( f1) − ( f5) hold. Then, there exist λ0 > 0 with
the following property: for any non-empty subsetϒ of {1, 2, ..., k} and λ ≥ λ0, problem

(
Pλ

)

has a solution uλ. Moreover, if we fix the subset ϒ , then for any sequence λn → ∞, we can
extract a subsequence (λni ) such that (uλni

) converges strongly in W 1,p(x)
(
R
N
)
to a function

u, which satisfies u = 0 outside �ϒ =⋃ j∈ϒ � j and u|� j
, j ∈ ϒ , is a least energy solution

for
{

−�p(x)u + Z(x)u = f (x, u), in � j ,

u ∈ W 1,p(x)
0

(
� j
)
, u ≥ 0, in � j .

Notations: The following notations will be used in the present work:

• C and Ci will denote generic positive constant, which may vary from line to line;
• In all the integrals, we omit the symbol dx .
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1566 C. O. Alves, M. C. Ferreira

• If u is a measurable function, we denote u+ and u− its positive and negative part, i.e.,
u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

• If u, v are measurable functions, u− = ess inf
RN

u, u+ = ess sup
RN

u and the notation u � v

means that ess inf
RN

(v − u) > 0 . Moreover, we will denote by u∗ the function

u∗(x) =
{

Nu(x)
N−u(x) , if u(x) < N ,

∞, if u(x) ≥ N .

2 Preliminaries on variable exponents Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponents Lebesgue and Sobolev spaces
found in [8,19,21] and their references.

Let h ∈ L∞(
R
N
)
with h− = ess inf

RN
h ≥ 1. The variable exponent Lebesgue space

Lh(x)
(
R
N
)
is defined by

Lh(x)(
R
N ) =

⎧
⎪⎨

⎪⎩
u : RN → R ; u is measurable and

∫

RN

|u|h(x) < ∞

⎫
⎪⎬

⎪⎭
,

endowed with the norm

|u|h(x) = inf

⎧
⎪⎨

⎪⎩
λ > 0 ;

∫

RN

∣∣∣
u

λ

∣∣∣
h(x) ≤ 1

⎫
⎪⎬

⎪⎭
.

The variable exponent Sobolev space is defined by

W 1,h(x)(
R
N ) =

{
u ∈ Lh(x)(

R
N ) ; ∣∣∇u

∣∣ ∈ Lh(x)(
R
N )
}

,

with the norm

‖u‖1,h(x) = inf

⎧
⎪⎨

⎪⎩
λ > 0 ;

∫

RN

(∣∣∣∣
∇u

λ

∣∣∣∣

h(x)

+
∣∣∣
u

λ

∣∣∣
h(x)
)

≤ 1

⎫
⎪⎬

⎪⎭
.

If h− > 1, the spaces Lh(x)
(
R
N
)
and W 1,h(x)

(
R
N
)
are separable and reflexive with these

norms.
We are mainly interested in subspaces of W 1,h(x)

(
R
N
)
given by

EW =

⎧
⎪⎨

⎪⎩
u ∈ W 1,h(x)(

R
N ) ;

∫

RN

W (x)|u|h(x) < ∞

⎫
⎪⎬

⎪⎭
,

where W ∈ C
(
R
N
)
is such that W− > 0. Endowing EW with the norm

‖u‖W = inf

⎧
⎪⎨

⎪⎩
λ > 0 ;

∫

RN

(∣∣∣∣
∇u

λ

∣∣∣∣

h(x)

+ W (x)
∣∣∣
u

λ

∣∣∣
h(x)
)

≤ 1

⎫
⎪⎬

⎪⎭
,
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Quasilinear problems involving variable exponents 1567

EW is a Banach space. Moreover, it is easy to see that EW ↪→ W 1,h(x)
(
R
N
)
continuously.

In addition, we can show that EW is reflexive. For the reader’s convenience, we recall some
basic results.

Proposition 2.1 The functional � : EW → R defined by

�(u) =
∫

RN

(∣
∣∇u

∣
∣h(x) + W (x) |u|h(x)

)
, (2.1)

has the following properties:

(i) If ‖u‖W ≥ 1, then ‖u‖h−
W ≤ �(u) ≤ ‖u‖h+

W .

(ii) If ‖u‖W ≤ 1, then ‖u‖h+
W ≤ �(u) ≤ ‖u‖h−

W .

In particular, for a sequence (un) in EW ,

‖un‖W → 0 ⇐⇒ �(un) → 0, and,

(un) is bounded in EW ⇐⇒ �(un) is bounded in R.

Remark 2.2 For the functional �h(x) : Lh(x)
(
R
N
)→ R given by

�h(x)(u) =
∫

RN

|u|h(x) ,

an analogous conclusion to that of Proposition 2.1 also holds.

Proposition 2.3 Let m ∈ L∞(
R
N
)
with 0 < m− ≤ m(x) ≤ h(x) for a.e. x ∈ R

N . If

u ∈ Lh(x)
(
R
N
)
, then |u|m(x) ∈ L

h(x)
m(x)
(
R
N
)
and

∣∣∣|u|m(x)
∣∣∣ h(x)
m(x)

≤ max
{
|u|m−

h(x), |u|m+
h(x)

}
≤ |u|m−

h(x) + |u|m+
h(x).

Related to the Lebesgue space Lh(x)
(
R
N
)
, we have the following generalized Hölder’s

inequality.

Proposition 2.4 (Hölder’s inequality) If h− > 1, let h′ : RN → R such that

1

h(x)
+ 1

h′(x)
= 1 for a.e. x ∈ R

N .

Then, for any u ∈ Lh(x)
(
R
N
)
and v ∈ Lh′(x)(

R
N
)
,

∫

RN

|uv| dx ≤
(

1

h−
+ 1

h′−

)
|u|h(x)|v|h′(x).

We can define variable exponent Lebesgue spaces with vector values. We say u =
(u1, . . . , uL) : RN → R

L ∈ Lh(x)
(
R
N ,RL

)
if, and only if, ui ∈ Lh(x)

(
R
N
)
, for i =

1, . . . , L . On Lh(x)
(
R
N ,RL

)
, we consider the norm |u|Lh(x)(RN ,RL ) =∑L

i=1 |ui |h(x).
We state below lemmas of Brezis–Lieb type. The proof of the two first results follows the

same arguments explored at [26], while the proof of the latter can be found at [8].

123



1568 C. O. Alves, M. C. Ferreira

Proposition 2.5 (Brezis–Lieb lemma, first version) Let (un) be a bounded sequence in
Lh(x)

(
R
N ,RL

)
such that un(x) → u(x) for a.e. x ∈ R

N . Then, u ∈ Lh(x)
(
R
N ,RL

)
and

∫

RN

∣
∣
∣|un |h(x) − |un − u|h(x) − |u|h(x)

∣
∣
∣ dx = on(1). (2.2)

Proposition 2.6 (Brezis–Lieb lemma, second version) Let (un) be a bounded sequence in
Lh(x)

(
R
N ,RL

)
with h− > 1 and un(x) → u(x) for a.e. x ∈ R

N . Then

un ⇀ u in Lh(x)(
R
N ,RL).

Proposition 2.7 (Brezis–Lieb lemma, third version) Let (un) be a bounded sequence in
Lh(x)

(
R
N ,RL

)
with h− > 1 and un(x) → u(x) for a.e. x ∈ R

N . Then

∫

RN

∣
∣
∣|un |h(x)−2 un − |un − u|h(x)−2 (un − u) − |u|h(x)−2u

∣
∣
∣
h′(x)

dx = on(1), (2.3)

To finish this section, we notice that for any open subset � ⊂ R
N , we can define in the

same way the spaces Lh(x)
(
�
)
and W 1,h(x)

(
�
)
. Moreover, all the above propositions have

analogous versions for these spaces and, besides, we have the following embedding Theorem
of Sobolev’s type.

Proposition 2.8 ([21, Theorems 1.1, 1.3]) Let � ⊂ R
N an open domain with the cone

property, h : � → R satisfying 1 < h− ≤ h+ < N and m ∈ L∞+
(
�
)
.

(i) If h is Lipschitz continuous and h ≤ m ≤ h∗, the embedding W 1,h(x)
(
�
)

↪→ Lm(x)
(
�
)

is continuous;
(ii) If � is bounded, h is continuous and m � h∗, the embedding W 1,h(x)

(
�
)

↪→ Lm(x)
(
�
)

is compact.

3 An auxiliary problem

In this section, we work with an auxiliary problem adapting the ideas explored in del Pino
and Felmer [14] (see also [3]).

We start noting that the energy functional Iλ : Eλ → R associated with
(
Pλ

)
is given by

Iλ(u) =
∫

RN

1

p(x)

(∣∣∇u
∣∣p(x) + (λV (x) + Z(x)

)|u|p(x)
)

−
∫

RN

F(x, u),

where Eλ = (E, ‖ · ‖λ

)
with

E =

⎧
⎪⎨

⎪⎩
u ∈ W 1,p(x)(

R
N ) ;

∫

RN

V (x)|u|p(x) < ∞

⎫
⎪⎬

⎪⎭
,

and

‖u‖λ = inf
{
σ > 0 ; �λ

( u
σ

)
≤ 1
}

,
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Quasilinear problems involving variable exponents 1569

being

�λ(u) =
∫

RN

(∣
∣∇u

∣
∣p(x) + (λV (x) + Z(x)

)|u|p(x)
)

.

Thus, Eλ ↪→ W 1,p(x)
(
R
N
)
continuously for λ ≥ 1 and Eλ is compactly embedded in

Lh(x)
loc

(
R
N
)
, for all 1 ≤ h � p∗. In addition, we can show that Eλ is a reflexive space. Also,

being O ⊂ R
N an open set, from the relation

�λ,O(u) =
∫

O

(∣
∣∇u

∣
∣p(x) + (λV (x) + Z(x)

)|u|p(x)
)

≥ M
∫

O
|u|p(x) = M�p(x),O(u),

(3.1)
for all u ∈ Eλ with λ ≥ 1, writing M = (1 − δ)−1ν, for some 0 < δ < 1 and ν > 0, we
derive

�λ,O(u) − ν�p(x),O(u) ≥ δ�λ,O(u), ∀u ∈ Eλ, λ ≥ 1. (3.2)

Remark 3.1 From the above commentaries, in this work the parameter λ will be always
bigger than or equal to 1.

We recall that for any ε > 0, the hypotheses ( f1), ( f2) and ( f5) yield

f (x, t) ≤ ε|t |p(x)−1 + Cε |t |q(x)−1, ∀x ∈ R
N , t ∈ R, (3.3)

and, consequently,

F(x, t) ≤ ε|t |p(x) + Cε |t |q(x), ∀x ∈ R
N , t ∈ R, (3.4)

whereCε depends on ε. Moreover, for each ν > 0 fixed, the assumptions ( f2) and ( f3) allow
us considering the function a : RN → R given by

a(x) = min

{
a > 0 ; f (x, a)

a p(x)−1
= ν

}
. (3.5)

From ( f2), it follows that
0 < a− = inf

x∈RN
a(x). (3.6)

Using the function a(x), we set the function f̃ : RN × R → R given by

f̃ (x, t) =
{

f (x, t), t ≤ a(x)

νt p(x)−1, t ≥ a(x)
,

which fulfills the inequality

f̃ (x, t) ≤ ν|t |p(x)−1, ∀x ∈ R
N , t ∈ R. (3.7)

Thus
f̃ (x, t)t ≤ ν|t |p(x), ∀x ∈ R

N , t ∈ R, (3.8)

and
F̃(x, t) ≤ ν

p(x)
|t |p(x), ∀x ∈ R

N , t ∈ R, (3.9)

where F̃(x, t) = ∫ t0 f̃ (x, s) ds.
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1570 C. O. Alves, M. C. Ferreira

Now, once that � = int V−1(0) is formed by k connected components �1, . . . , �k with
dist
(
�i ,� j

)
> 0, i �= j , then for each j ∈ {1, . . . , k}, we are able to fix a smooth bounded

domain �′
j such that

� j ⊂ �′
j and �′

i ∩ �′
j = ∅, for i �= j. (3.10)

From now on, we fix a non-empty subset ϒ ⊂ {1, . . . , k} and

�ϒ =
⋃

j∈ϒ

� j , �′
ϒ =

⋃

j∈ϒ

�′
j , χϒ =

{
1, if x ∈ �′

ϒ

0, if x /∈ �′
ϒ.

Using the above notations, we set the functions

g(x, t) = χϒ(x) f (x, t) + (1 − χϒ(x)
)
f̃ (x, t), (x, t) ∈ R

N × R

and

G(x, t) =
t∫

0

g(x, s) ds, (x, t) ∈ R
N × R,

and the auxiliary problem

(
Aλ

)
{

−�p(x)u + (λV (x) + Z(x)
)|u|p(x)−2u = g(x, u), in R

N ,

u ∈ W 1,p(x)
(
R
N
)
.

The problem
(
Aλ

)
is related to

(
Pλ

)
in the sense that, if uλ is a solution for

(
Aλ

)
verifying

uλ(x) ≤ a(x), ∀x ∈ R
N \ �′

ϒ,

then it is a solution for
(
Pλ

)
.

In comparison with
(
Pλ

)
, problem

(
Aλ

)
has the advantage that the energy functional

associated with
(
Aλ

)
, namely, φλ : Eλ → R given by

φλ(u) =
∫

RN

1

p(x)

(
|∇u|p(x) + (λV (x) + Z(x)

)|u|p(x)
)

−
∫

RN

G(x, u),

satisfies the (PS) condition, whereas Iλ does not necessarily satisfy this condition. In this
way, the mountain pass level (see Theorem 3.6) is a critical value for φλ.

Proposition 3.2 φλ satisfies the mountain pass geometry.

Proof From (3.4) and (3.9),

φλ(u) ≥ 1

p+
�λ(u) − ε

∫

RN

|u|p(x) − Cε

∫

RN

|u|q(x) − ν

p−

∫

RN

|u|p(x),

for ε > 0 and Cε > 0 be a constant depending on ε. By (3.1), fixing ε < M
p+ and ν <

p−M
(

1
p+ − ε

M

)
and assuming ‖u‖λ < min

{
1, 1/Cq

}
, where |v|q(x) ≤ Cq‖v‖λ, ∀v ∈ Eλ,

we derive from Proposition 2.1

φλ(u) ≥ α‖u‖p+
λ − C‖u‖q−

λ ,

123



Quasilinear problems involving variable exponents 1571

where α =
(

1
p+ − ε

M

)
− ν

p−M > 0. Once p+ < q−, the first part of the mountain pass

geometry is satisfied. Now, fixing v ∈ C∞
0 (�ϒ), we have for t ≥ 0

φλ(tv) =
∫

RN

t p(x)

p(x)

(
|∇v|p(x) + Z(x)

)|v|p(x)
)

−
∫

RN

F(x, tv).

If t > 1, by ( f3),

φλ(tv) ≤ t p
+

p−

∫

RN

(
|∇v|p(x) + Z(x)

)|v|p(x)
)

− C1t
θ

∫

RN

|v|θ − C2,

and so,

φλ(tv) → −∞ as t → +∞.

The last limit implies that φλ verifies the second geometry of the mountain pass. ��
Proposition 3.3 All (PS)d sequences for φλ are bounded in Eλ.

Proof Let (un) be a (PS)d sequence for φλ. So, there is n0 ∈ N such that

φλ(un) − 1

θ
φ′

λ(un)un ≤ d + 1 + ‖un‖λ, for n ≥ n0.

On the other hand, by (3.8) and (3.9)

F̃(x, t) − 1

θ
f̃ (x, t)t ≤

(
1

p(x)
− 1

θ

)
ν|t |p(x), ∀x ∈ R

N , t ∈ R,

which together with (3.2) gives

φλ(un) − 1

θ
φ′

λ(un)un ≥
(

1

p+
− 1

θ

)
δ�λ(un), ∀n ∈ N.

Hence

d + 1 + max
{
�λ(un)

1/p− , �λ(un)
1/p+} ≥

(
1

p+
− 1

θ

)
δ�λ(un), ∀n ≥ n0,

from where it follows that (un) is bounded in Eλ. ��
Proposition 3.4 If (un) is a (PS)d sequence for φλ, then given ε > 0, there is R > 0 such
that

lim sup
n

∫

RN \BR(0)

(∣∣∇un
∣∣p(x) + (λV (x) + Z(x)

)|un |p(x)
)

< ε. (3.11)

Hence, once that g has a subcritical growth, if u ∈ Eλ is the weak limit of (un), then
∫

RN

g(x, un)un dx →
∫

RN

g(x, u)u dx and
∫

RN

g(x, un)v dx →
∫

RN

g(x, u)v dx, ∀v ∈ Eλ.

Proof Let (un) be a (PS)d sequence for φλ, R > 0 large such that �′
ϒ ⊂ B R

2
(0) and

ηR ∈ C∞(
R
N
)
satisfying

ηR(x) =
{
0, x ∈ B R

2
(0)

1, x ∈ R
N\BR(0)

,
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0 ≤ ηR ≤ 1 and
∣
∣∇ηR

∣
∣ ≤ C

R
, where C > 0 does not depend on R. This way,

∫

RN

(∣
∣∇un

∣
∣p(x) + (λV (x) + Z(x)

)|un |p(x)
)

ηR

= φ′
λ(un) (unηR) −

∫

RN

un
∣
∣∇un

∣
∣p(x)−2∇un · ∇ηR +

∫

RN \�′
ϒ

f̃ (x, un)unηR .

Denoting

I =
∫

RN

(∣
∣∇un

∣
∣p(x) + (λV (x) + Z(x)

)|un |p(x)
)

ηR,

it follows from (3.8),

I ≤ φ′
λ(un) (unηR) + C

R

∫

RN

|un |
∣
∣∇un

∣
∣p(x)−1 + ν

∫

RN

|un |p(x)ηR .

Using Hölder’s inequality 2.4 and Proposition 2.3, we derive

I ≤ φ′
λ(un) (unηR) + C

R
|un |p(x) max

{∣∣∇un
∣∣p−−1
p(x) ,

∣∣∇un
∣∣p+−1
p(x)

}
+ ν

M
I.

Since (un) and
(∣∣∇un

∣∣
)
are bounded in L p(x)

(
R
N
)
and ν

M = 1 − δ, we obtain

∫

RN \BR(0)

(∣∣∇un
∣∣p(x) + (λV (x) + Z(x)

)|un |p(x)
)

≤ on(1) + C

R
.

Therefore

lim sup
n

∫

RN \BR(0)

(∣∣∇un
∣∣p(x) + (λV (x) + Z(x)

)|un |p(x)
)

≤ C

R
.

So, given ε > 0, choosing a R > 0 possibly still bigger, we have that
C

R
< ε, which proves

(3.11). Now, we will show that
∫

RN

g(x, un)un →
∫

RN

g(x, u)u.

Using the fact that g(x, u)u ∈ L1(RN ) together with (3.11) and Sobolev embeddings, given
ε > 0, we can choose R > 0 such that

lim sup
n→+∞

∫

RN \BR(0)

|g(x, un)un | ≤ ε

4
and

∫

RN \BR(0)

|g(x, u)u| ≤ ε

4
.

On the other hand, since g has a subcritical growth, we have by compact embeddings
∫

BR(0)

g(x, un)un →
∫

BR(0)

g(x, u)u.
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Combining the above information, we conclude that
∫

RN

g(x, un)un →
∫

RN

g(x, u)u.

The same type of arguments works to prove that
∫

RN

g(x, un)v →
∫

RN

g(x, u)v ∀v ∈ Eλ.

��
Proposition 3.5 φλ verifies the (PS) condition.

Proof Let (un) be a (PS)d sequence for φλ and u ∈ Eλ such that un ⇀ u in Eλ. Thereby,
by Proposition 3.4,

∫

RN

g(x, un)un →
∫

RN

g(x, u)u and
∫

RN

g(x, un)v →
∫

RN

g(x, u)v, ∀v ∈ Eλ.

Moreover, the weak limit also gives
∫

RN

∣∣∇u
∣∣p(x)−2∇u · ∇(un − u) → 0

and
∫

RN

(
λV (x) + Z(x)

)|u|p(x)−2u(un − u) → 0.

Now, if

P1
n (x) =

(∣∣∇un
∣∣p(x)−2∇un − ∣∣∇u

∣∣p(x)−2∇u
)

· (∇un − ∇u)

and

P2
n (x) =

(
|un |p(x)−2un − |u|p(x)−2u

)
(un − u),

we derive
∫

RN

(
P1
n (x) + (λV (x) + Z(x)

)
P2
n (x)

)
= φ′

λ(un)un +
∫

RN

g(x, un)un − φ′
λ(un)u −

∫

RN

g(x, un)u

−
∫

RN

(∣
∣∇u

∣
∣p(x)−2∇u · ∇(un − u) + (λV (x) + Z(x)

)|u|p(x)−2u(un − u)
)

.

Recalling that φ′
λ(un)un = on(1) and φ′

λ(un)u = on(1), the above limits lead to
∫

RN

(
P1
n (x) + (λV (x) + Z(x)

)
P2
n (x)

)
→ 0.

Now, the conclusion follows as in [8]. ��
Theorem 3.6 The problem

(
Aλ

)
has a (nonnegative) solution, for all λ ≥ 1.

Proof The proof is an immediate consequence of the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz [10]. ��
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4 The (PS)∞ condition

A sequence (un) ⊂ W 1,p(x)
(
R
N
)
is called a (PS)∞ sequence for the family (φλ)λ≥1, if there

is a sequence (λn) ⊂ [1,∞) with λn → ∞, as n → ∞, verifying

φλn (un) → c and
∥
∥φ′

λn
(un)

∥
∥→ 0, as n → ∞.

Proposition 4.1 Let (un) ⊂ W 1,p(x)
(
R
N
)
be a (PS)∞ sequence for (φλ)λ≥1. Then, up to a

subsequence, there exists u ∈ W 1,p(x)
(
R
N
)
such that un ⇀ u in W 1,p(x)

(
R
N
)
. Furthermore,

(i) �λn (un − u) → 0 and, consequently, un → u in W 1,p(x)
(
R
N
)
;

(ii) u = 0 in R
N \ �ϒ, u ≥ 0 and u|� j

, j ∈ ϒ , is a solution for

(Pj )

{
−�p(x)u + Z(x)|u|p(x)−2u = f (x, u), in � j ,

u ∈ W 1,p(x)
0

(
� j
);

(iii)
∫

RN
λnV (x)|un |p(x) → 0;

(iv) �λn ,�
′
j
(un) →

∫

� j

(∣
∣∇u

∣
∣p(x) + Z(x)|u|p(x)

)
, for j ∈ ϒ;

(v) �λn ,RN \�ϒ
(un) → 0;

(vi) φλn (un) →
∫

�ϒ

1

p(x)

(∣∣∇u
∣∣p(x) + Z(x)|u|p(x)

)
−
∫

�ϒ

F(x, u).

Proof Using the same reasoning as in the proof of Proposition 3.3, we obtain that
(
�λn (un)

)

is bounded in R. Then
(‖un‖λn

)
is bounded in R and (un) is bounded in W 1,p(x)

(
R
N
)
. So,

up to a subsequence, there exists u ∈ W 1,p(x)
(
R
N
)
such that

un ⇀ u in W 1,p(x)(
R
N ) and un(x) → u(x) for a.e. x ∈ R

N .

Now, for each m ∈ N, we define Cm =
{
x ∈ R

N ; V (x) ≥ 1

m

}
. Without loss of generality,

we can assume λn < 2(λn − 1), ∀n ∈ N. Thus
∫

Cm

|un |p(x) ≤ 2m

λn

∫

Cm

(
λnV (x) + Z(x)

)|un |p(x) ≤ 2m

λn
�λn (un) ≤ C

λn
.

By Fatou’s lemma, we derive
∫

Cm

|u|p(x) = 0,

which implies that u = 0 in Cm and, consequently, u = 0 in R
N \ �. From this, we are able

to prove (i) − (vi).

(i) Since u = 0 in R
N \ �, repeating the argument explored in Proposition 3.5 we get
∫

RN

(
P1
n (x) + (λnV (x) + Z(x)

)
P2
n (x)

)
→ 0,

where

P1
n (x) =

(∣∣∇un
∣∣p(x)−2∇un − ∣∣∇u

∣∣p(x)−2∇u
)

· (∇un − ∇u)
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and

P2
n (x) =

(
|un |p(x)−2un − |u|p(x)−2u

)
(un − u).

Therefore, �λn (un − u) → 0, which implies un → u in W 1,p(x)
(
R
N
)
.

(i i) Since u ∈ W 1,p(x)
(
R
N
)
and u = 0 inRN \�, we have u ∈ W 1,p(x)

0

(
�
)
or, equivalently,

u|� j
∈ W 1,p(x)

0

(
� j
)
, for j = 1, . . . , k. Moreover, the limit un → u in W 1,p(x)(RN )

combined with φ′
λn

(un)ϕ → 0 for ϕ ∈ C∞
0

(
� j
)
implies that

∫

� j

(∣
∣∇u

∣
∣p(x)−2∇u · ∇ϕ + Z(x)|u|p(x)−2uϕ

)
−
∫

� j

g(x, u)ϕ = 0, (4.1)

showing that u|� j
is a solution for

{
−�p(x)u + Z(x)|u|p(x)−2u = g(x, u), in � j ,

u ∈ W 1,p(x)
0

(
� j
)
.

This way, if j ∈ ϒ , then u|� j
satisfies (Pj ). On the other hand, if j /∈ ϒ , we must have

∫

� j

(∣∣∇u
∣∣p(x) + Z(x)|u|p(x)

)
−
∫

� j

f̃ (x, u)u = 0.

The above equality combined with (3.8) and (3.2) gives

0 ≥ �λ,� j (u) − ν�p(x),� j (u) ≥ δ�λ,� j (u) ≥ 0,

from where it follows u|� j
= 0. This proves u = 0 outside �ϒ and u ≥ 0 in R

N .
(i i i) It follows from (i), since

∫

RN

λnV (x)|un |p(x) =
∫

RN

λnV (x)|un − u|p(x) ≤ 2�λn (un − u).

(iv) Let j ∈ ϒ . From (i),

�p(x),�′
j
(un − u), �p(x),�′

j

(∇un − ∇u
)→ 0.

Then by Proposition 2.5,
∫

�′
j

(∣∣∇un
∣∣p(x) − ∣∣∇u

∣∣p(x))→ 0 and
∫

�′
j

Z(x)
(|un |p(x) − |u|p(x))→ 0.

From (iii),
∫

�′
j

λnV (x)
(|un |p(x) − |u|p(x)) =

∫

�′
j \� j

λnV (x)|un |p(x) → 0.

This way

�λn ,�
′
j
(un) − �λn ,�

′
j
(u) → 0.
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Once u = 0 in �′
j \ � j , we get

�λn ,�
′
j
(un) →

∫

� j

(
|∇u|p(x) + Z(x)|u|p(x)

)
.

(v) By (i), �λn (un − u) → 0, and so,

�λn ,RN \�ϒ
(un) → 0.

(vi) We can write the functional φλn in the following way

φλn (un) =
∑

j∈ϒ

∫

�′
j

1

p(x)

(∣
∣∇un

∣
∣p(x) + (λnV (x) + Z(x)

)|un |p(x)
)

+
∫

RN \�′
ϒ

1

p(x)

(∣
∣∇un

∣
∣p(x) + (λnV (x) + Z(x)

)|un |p(x)
)

−
∫

RN

G(x, un).

From (i) − (v),
∫

�′
j

1

p(x)

(∣∣∇un
∣∣p(x) + (λnV (x) + Z(x)

)|un |p(x)
)

→
∫

� j

1

p(x)

(∣∣∇u
∣∣p(x) + Z(x)|u|p(x)

)
,

∫

RN \�′
ϒ

1

p(x)

(∣∣∇un
∣∣p(x) + (λnV (x) + Z(x)

)|un |p(x)
)

→ 0.

and ∫

RN

G(x, un) →
∫

�ϒ

F(x, u).

Therefore

φλn (un) →
∫

�ϒ

1

p(x)

(
|∇u|p(x) + Z(x)|u|p(x)

)
−
∫

�ϒ

F(x, u).

��

5 The boundedness of the
(
Aλ

)
solutions

In this section, we study the boundedness outside �′
ϒ for some solutions of

(
Aλ

)
. To this

end, we adapt for our problem arguments found in [18] and [25].

Proposition 5.1 Let
(
uλ

)
be a family of solutions for

(
Aλ

)
such that uλ → 0 in W 1,p(x)

(
R
N \

�ϒ

)
, as λ → ∞. Then, there exists λ∗ > 0 with the following property:

|uλ|∞,RN \�′
ϒ

≤ a−, ∀λ ≥ λ∗.

Hence, uλ is a solution for (Pλ) for λ ≥ λ∗.

Before to prove the above proposition, we need to show some technical lemmas.
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Lemma 5.2 There exist x1, . . . , xl ∈ ∂�′
ϒ and corresponding δx1 , . . . , δxl > 0 such that

∂�′
ϒ ⊂ N (∂�′

ϒ

) :=
l⋃

i=1

B δxi
2

(xi ).

Moreover,
qxi+ ≤ (pxi−

)∗
, (5.1)

where

qxi+ = sup
Bδxi

(xi )
q, pxi− = inf

Bδxi
(xi )

p and
(
pxi−
)∗ = Npxi−

N − pxi−
.

Proof From (3.10), �ϒ ⊂ �′
ϒ . So, there is δ > 0 such that

Bδ(x) ⊂ R
N \ �ϒ, ∀x ∈ ∂�′

ϒ.

Once q � p∗, there exists ε > 0 such that ε ≤ p∗(y) − q(y), for all y ∈ R
N . Then, by

continuity, for each x ∈ ∂�′
ϒ , we can choose a sufficiently small 0 < δx ≤ δ such that

qx+ ≤ (px−
)∗

,

where

qx+ = sup
Bδx (x)

q, px− = inf
Bδx (x)

p and
(
px−
)∗ = Npx−

N − px−
.

Covering ∂�′
ϒ by the balls B δx

2
(x), x ∈ ∂�′

ϒ , and using its compactness, there are

x1, . . . , xl ∈ ∂�′
ϒ such that

∂�′
ϒ ⊂

l⋃

i=1

B δxi
2

(xi ).

��
Lemma 5.3 If uλ is a solution for

(
Aλ

)
, in each Bδxi

(xi ), i = 1, . . . , l, given by Lemma
5.2, it is fulfilled

∫

Ak,δ,xi

∣∣∇uλ

∣∣p
xi− ≤ C

⎛

⎜⎜
⎝
(
kq+ + 2

)∣∣Ak ,̃δ,xi

∣∣+ (δ̃ − δ
)−
(
p
xi−
)∗ ∫

Ak ,̃δ,xi

(uλ − k)
(
p
xi−
)∗

⎞

⎟⎟
⎠ ,

where 0 < δ < δ̃ < δxi , k ≥ a−
4

,C = C
(
p−, p+, q−, q+, ν, δxi

)
> 0 is a constant

independent of k, and for any R > 0, we denote by Ak,R,xi the set

Ak,R,xi = BR(xi ) ∩
{
x ∈ R

N ; uλ(x) > k
}

.

Proof We choose arbitrarily 0 < δ < δ̃ < δxi and ξ ∈ C∞(
R
N
)
with

0 ≤ ξ ≤ 1, supp ξ ⊂ Bδ̃ (xi ), ξ = 1 in Bδ(xi ) and
∣∣∇ξ

∣∣ ≤ 2

δ̃ − δ
.

For k ≥ a−
4
, we define η = ξ p+(uλ − k)+. We notice that

∇η = p+ξ p+−1(uλ − k)∇ξ + ξ p+∇uλ
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on the set {uλ > k}. Then, writing uλ = u and taking η as a test function, we obtain

p+
∫

Ak ,̃δ,xi

ξ p+−1(u − k)
∣
∣∇u

∣
∣p(x)−2∇u · ∇ξ +

∫

Ak ,̃δ,xi

ξ p+ ∣∣∇u
∣
∣p(x)

+
∫

Ak ,̃δ,xi

(
λV (x) + Z(x)

)
u p(x)−1ξ p+(u − k) =

∫

Ak ,̃δ,xi

g(x, u)ξ p+(u − k).

If we set

J =
∫

Ak ,̃δ,xi

ξ p+ ∣∣∇u
∣
∣p(x),

using that ν ≤ λV (x) + Z(x), ∀x ∈ R
N , we get

J ≤ p+
∫

Ak ,̃δ,xi

ξ p+−1(u − k)
∣
∣∇u

∣
∣p(x)−1∣∣∇ξ

∣
∣

−
∫

Ak ,̃δ,xi

νu p(x)−1ξ p+(u − k) +
∫

Ak ,̃δ,xi

g(x, u)ξ p+(u − k). (5.2)

From (5.2), (3.3) and (3.7),

J ≤ p+
∫

Ak ,̃δ,xi

ξ p+−1(u − k)
∣∣∇u

∣∣p(x)−1∣∣∇ξ
∣∣−

∫

Ak ,̃δ,xi

νu p(x)−1ξ p+(u − k)

+
∫

Ak ,̃δ,xi

(
νu p(x)−1 + Cνu

q(x)−1)ξ p+(u − k),

from where it follows

J ≤ p+
∫

Ak ,̃δ,xi

ξ p+−1(u − k)
∣∣∇u

∣∣p(x)−1∣∣∇ξ
∣∣+ Cν

∫

Ak ,̃δ,xi

uq(x)−1(u − k).

Using Young’s inequality, we obtain, for χ ∈ (0, 1),

J ≤ p+(p+ − 1)

p−
χ

p−
p+−1 J + 2p+ p+

p−
χ−p+

∫

Ak ,̃δ,xi

(
u − k

δ̃ − δ

)p(x)

+Cν(q+ − 1)

q−

∫

Ak ,̃δ,xi

uq(x) + Cν

(
1 + δ

q+
xi

)

q−

∫

Ak ,̃δ,xi

(
u − k

δ̃ − δ

)q(x)

.

Writing

Q =
∫

Ak ,̃δ,xi

(
u − k

δ̃ − δ

)(pxi−
)∗

,
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for χ ≈ 0+ fixed, due to (5.1), we deduce

J ≤ 1

2
J + 2p+ p+

p−
χ−p+

(∣
∣Ak ,̃δ,xi

∣
∣+ Q

)
+ Cν2q+(q+ − 1)

(
1 + δ

q+
xi

)

q−

(∣
∣Ak ,̃δ,xi

∣
∣+ Q

)

+Cν2q+(q+ − 1) (1 + kq+)

q−
∣
∣Ak ,̃δ,xi

∣
∣+ Cν

(
1 + δ

q+
xi

)

q−

(∣
∣Ak ,̃δ,xi

∣
∣+ Q

)
.

Therefore
∫

Ak,δ,xi

∣
∣∇u

∣
∣p(x) ≤ J ≤ C

[(
kq+ + 1

)∣∣Ak ,̃δ,xi

∣
∣+ Q

]
,

for a positive constant C = C
(
p−, p+, q−, q+, ν, δxi

)
which does not depend on k. Since

∣
∣∇u

∣
∣p

xi− − 1 ≤ ∣∣∇u
∣
∣p(x), ∀x ∈ Bδxi

(xi ),

we obtain
∫

Ak,δ,xi

∣
∣∇u

∣
∣p

xi− ≤ C
[(
kq+ + 1

)∣∣Ak ,̃δ,xi

∣
∣+ Q

]+ ∣∣Ak ,̃δ,xi

∣
∣

≤ C

⎛

⎜⎜
⎝
(
kq+ + 2

)∣∣Ak ,̃δ,xi

∣∣+ (δ̃ − δ
)−
(
p
xi−
)∗ ∫

Ak ,̃δ,xi

(u − k)
(
p
xi−
)∗

⎞

⎟⎟
⎠ ,

for a positive constant C = C
(
p−, p+, q−, q+, ν, δxi

)
which does not depend on k. ��

The next lemma can be found at ([27, Lemma 4.7]).

Lemma 5.4 Let (Jn) be a sequence of nonnegative numbers satisfying

Jn+1 ≤ CBn J 1+η
n , n = 0, 1, 2, . . . ,

where C, η > 0 and B > 1. If

J0 ≤ C− 1
η B

− 1
η2 ,

then Jn → 0, as n → ∞.

Lemma 5.5 Let
(
uλ

)
be a family of solutions for

(
Aλ

)
such that uλ → 0 in W 1,p(x)

(
R
N \

�ϒ

)
, as λ → ∞. Then, there exists λ∗ > 0 with the following property:

|uλ|∞,N(∂�′
ϒ) ≤ a−, ∀λ ≥ λ∗.

Proof It is enough to prove the inequality in each ball B δxi
2

(xi ), i = 1, . . . , l, given by

Lemma 5.2. We set

δ̃n = δxi

2
+ δxi

2n+1 , δn = δ̃n + δ̃n+1

2
, kn = a−

2

(
1 − 1

2n+1

)
, ∀n = 0, 1, 2, . . . .

Then

δ̃n ↓ δxi

2
, δ̃n+1 < δn < δ̃n, kn ↑ a−

2
.
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From now on, we fix

Jn(λ) = Jn =
∫

Akn ,̃δn ,xi

(
uλ(x) − kn

)
(
p
xi−
)∗

, n = 0, 1, 2, . . . .

and ξ ∈ C1
(
R
)
such that

0 ≤ ξ ≤ 1, ξ(t) = 1, for t ≤ 1

2
, and ξ(t) = 0, for t ≥ 3

4
.

Setting

ξn(x) = ξ

(
2n+1

δxi

(∣
∣x − xi

∣
∣− δxi

2

))
, x ∈ R

N , n = 0, 1, 2, . . . ,

we have ξn = 1 in Bδ̃n+1
(xi ) and ξn = 0 outside Bδn

(xi ). Writing uλ = u, we get

Jn+1 ≤
∫

Akn+1,δn ,xi

(
(u(x) − kn+1)ξn(x)

)
(
p
xi−
)∗

=
∫

Bδxi
(xi )

(
(u − kn+1)

+(x)ξn(x)
)
(
p
xi−
)∗

≤ C
(
N , pxi−

)
⎛

⎜
⎝

∫

Bδxi
(xi )

∣∣∇((u − kn+1)
+ξn
)
(x)
∣∣p

xi−

⎞

⎟
⎠

(
p
xi−
)∗

p
xi−

≤ C
(
N , pxi−

)

⎛

⎜⎜
⎝

∫

Akn+1,δn ,xi

∣∣∇u
∣∣p

xi− +
∫

Akn+1,δn ,xi

(u − kn+1)
p
xi−
∣∣∇ξn

∣∣p
xi−

⎞

⎟⎟
⎠

(
p
xi−
)∗

p
xi−

.

Since

∣∣∇ξn(x)
∣∣ ≤ C

(
δxi
)
2n+1, ∀x ∈ R

N ,

writing J

p
xi−(

p
xi−
)∗

n+1 = J̃n+1, we obtain

J̃n+1 ≤ C
(
N , pxi− , δxi

)

⎛

⎜⎜
⎝

∫

Akn+1,δn ,xi

∣∣∇u
∣∣p

xi− + 2np
xi−

∫

Akn+1,δn ,xi

(u − kn+1)
p
xi−

⎞

⎟⎟
⎠ .
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Using Lemma 5.3,

J̃n+1 ≤ C
(
N , pxi− , δxi

)( (
kq+
n+1 + 2

) ∣∣Akn+1 ,̃δn ,xi

∣
∣

+
(
2n+3

δxi

)
(
p
xi−
)∗ ∫

Akn+1 ,̃δn ,xi

(u − kn+1)

(
p
xi−
)∗

+ 2np
xi−

∫

Akn+1 ,̃δn ,xi

(u − kn+1)
p
xi−
)

≤ C
(
N , pxi− , δxi

)( (
kq+
n+1 + 2

) ∣∣Akn+1 ,̃δn ,xi

∣
∣

+ 2
n
(
p
xi−
)∗ ∫

Akn+1 ,̃δn ,xi

(u − kn+1)

(
p
xi−
)∗

+ 2np
xi−

∫

Akn+1 ,̃δn ,xi

(u − kn+1)
p
xi−
)

.

From Young’s inequality

∫

Akn+1 ,̃δn ,xi

(u − kn+1)
p
xi− ≤ C

(
pxi−
)

⎛

⎜⎜
⎝
∣∣Akn+1 ,̃δn ,xi

∣∣+
∫

Akn+1 ,̃δn ,xi

(u − kn+1)

(
p
xi−
)∗
⎞

⎟⎟
⎠ .

Thus

J̃n+1 ≤ C
(
N , pxi− , δxi

)(((a−
2

)q+ + 2 + 2np
xi−
)∣∣Akn+1 ,̃δn ,xi

∣∣+ 2
n
(
p
xi−
)∗
Jn + 2np

xi− Jn

)
.

Now, since

Jn ≥
∫

Akn+1 ,̃δn ,xi

(u − kn)

(
p
xi−
)∗

≥ (kn+1 − kn)

(
p
xi−
)∗ ∣∣Akn+1 ,̃δn ,xi

∣∣

it follows that

∣∣Akn+1 ,̃δn ,xi

∣∣ ≤
(
2n+3

a−

)
(
p
xi−
)∗

Jn,

and so,

J̃n+1 ≤ C
(
N , pxi− , δxi , a−, q+

)(
2
n
(
p
xi−
)∗
Jn + 2

n
(
p
xi− +
(
p
xi−
)∗)

Jn+2
n
(
p
xi−
)∗
Jn + 2np

xi− Jn

)
.

Fixing α = (pxi− + (pxi−
)∗ ), it follows that

Jn+1 ≤ C
(
N , pxi− , δxi , a−, q+

)
⎛

⎜
⎝2

α

(
p
xi−
)∗

p
xi−

⎞

⎟
⎠

n

Jn

(
p
xi−
)∗

p
xi− ,

and consequently

Jn+1 ≤ CBn J 1+η
n ,
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where C = C
(
N , pxi− , δxi , a−, q+

)
, B = 2

α

(
p
xi−
)∗

p
xi− and η =

(
p
xi−
)∗

p
xi−

− 1. Now, once that

uλ → 0 in W 1,p(x)
(
R
N \ �ϒ

)
, as λ → ∞, there exists λi > 0 such that

∫

A a−
4 ,δxi ,xi

(
uλ − a−

4

)(pxi−
)∗

= J0(λ) ≤ C− 1
η B

− 1
η2 , λ ≥ λi .

From Lemma 5.4, Jn(λ) → 0, n → ∞, for all λ ≥ λi , and so,

uλ ≤ a−
2

< a−, in B δxi
2

, for all λ ≥ λi .

Now, taking λ∗ = max{λ1, . . . , λl}, we conclude that
|uλ|∞,N(∂�′

ϒ) < a−, ∀λ ≥ λ∗.

��
Proof of Proposition 5.1 Fix λ ≥ λ∗, where λ∗ is given at Lemma 5.5, and define ũλ : RN \
�′

ϒ → R given by

ũλ(x) = (uλ − a−)+ (x).

From Lemma 5.5, ũλ ∈ W 1,p(x)
0

(
R
N \ �′

ϒ

)
. Our goal is showing that ũλ = 0 in R

N \ �′
ϒ .

This implies

|uλ|∞,RN \�′
ϒ

≤ a−.

In fact, extending ũλ = 0 in �′
ϒ and taking ũλ as a test function, we obtain

∫

RN \�′
ϒ

∣∣∇uλ

∣∣p(x)−2∇uλ · ∇ũλ +
∫

RN \�′
ϒ

(
λV (x) + Z(x)

)
u p(x)−2

λ uλũλ =
∫

RN \�′
ϒ

g (x, uλ) ũλ.

Since
∫

RN \�′
ϒ

∣∣∇uλ

∣∣p(x)−2∇uλ · ∇ũλ =
∫

RN \�′
ϒ

∣∣∇ũλ

∣∣p(x),

∫

RN \�′
ϒ

(
λV (x) + Z(x)

)
u p(x)−2

λ uλũλ =
∫

(RN \�′
ϒ)+

(
λV (x) + Z(x)

)
u p(x)−2

λ (̃uλ + a−) ũλ

and
∫

RN \�′
ϒ

g (x, uλ) ũλ =
∫

(RN \�′
ϒ)+

g (x, uλ)

uλ

(̃uλ + a−) ũλ,

where
(
R
N \ �′

ϒ

)

+ =
{
x ∈ R

N \ �′
ϒ ; uλ(x) > a−

}
,

we derive
∫

RN \�′
ϒ

∣∣∇ũλ

∣∣p(x) +
∫

(RN \�′
ϒ)+

((
λV (x) + Z(x)

)
u p(x)−2

λ − g (x, uλ)

uλ

)
(̃uλ + a−) ũλ = 0,
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Now, by (3.7),

(
λV (x) + Z(x)

)
u p(x)−2

λ − g (x, uλ)

uλ

> νu p(x)−2
λ − f̃ (x, uλ)

uλ

≥ 0 in
(
R
N \ �′

ϒ

)

+ .

This form, ũλ = 0 in
(
R
N \ �′

ϒ

)
+. Obviously, ũλ = 0 at the points where uλ ≤ a−,

consequently, ũλ = 0 in R
N \ �′

ϒ .

6 A special critical value for φλ

For each j = 1, . . . , k, consider

I j (u) =
∫

� j

1

p(x)

(∣
∣∇u

∣
∣p(x) + Z(x)|u|p(x)

)
−
∫

� j

F(x, u), u ∈ W 1,p(x)
0

(
� j
)
,

the energy functional associated to (Pj ), and

φλ, j (u) =
∫

�′
j

1

p(x)

(∣∣∇u
∣∣p(x) + (λV (x) + Z(x)

)|u|p(x)
)

−
∫

�′
j

F(x, u), u ∈ W 1,p(x)(�′
j

)
,

the energy functional associated to
{

−�p(x)u + (λV (x) + Z(x)
)|u|p(x)−2u = f (x, u), in �′

j ,
∂u
∂η

= 0, on ∂�′
j .

It is fulfilled that I j and φλ, j satisfy the mountain pass geometry and let

c j = inf
γ∈� j

max
t∈[0,1] I j

(
γ (t)

)
and cλ, j = inf

γ∈�λ, j
max
t∈[0,1] φλ, j

(
γ (t)

)
,

their respective mountain pass levels, where

� j =
{
γ ∈ C

(
[0, 1],W 1,p(x)

0

(
� j
)) ; γ (0) = 0 and I j

(
γ (1)

)
< 0
}

and

�λ, j =
{
γ ∈ C

(
[0, 1],W 1,p(x)(�′

j

)) ; γ (0) = 0 and φλ, j
(
γ (1)

)
< 0
}

.

Invoking the (PS) condition on I j and φλ, j , we ensure that there exist w j ∈ W 1,p(x)
0

(
� j
)

and wλ, j ∈ W 1,p(x)
(
�′

j

)
such that

I j
(
w j
) = c j and I ′

j

(
w j
) = 0

and

φλ, j
(
wλ, j

) = cλ, j and φ′
λ, j

(
wλ, j

) = 0.

Lemma 6.1 There holds that

(i) 0 < cλ, j ≤ c j , ∀λ ≥ 1, ∀ j ∈ {1, . . . , k};
(ii) cλ, j → c j , as λ → ∞, ∀ j ∈ {1, . . . , k}.
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Proof (i) Once W 1,p(x)
0

(
� j
) ⊂ W 1,p(x)

(
�′

j

)
and φλ, j

(
γ (1)

) = I j
(
γ (1)

)
for γ ∈ � j , we

have � j ⊂ �λ, j . This way

cλ, j = inf
γ∈�λ, j

max
t∈[0,1] φλ, j

(
γ (t)

) ≤ inf
γ∈� j

max
t∈[0,1] φλ, j

(
γ (t)

) = inf
γ∈� j

max
t∈[0,1] I j

(
γ (t)

) = c j .

(ii) It suffices to show that cλn , j → c j , as n → ∞, for all sequences (λn) in [1,∞)

with λn → ∞, as n → ∞. Let (λn) be such a sequence and consider an arbitrary
subsequence of

(
cλn , j

)
(not relabeled) . Let wn ∈ W 1,p(x)

(
�′

j

)
with

φλn , j
(
wn
) = cλn , j and φ′

λn , j

(
wn
) = 0.

By the previous item,
(
cλn , j

)
is bounded. Then, there exists

(
wnk

)
subsequence of

(
wn
)

such that φλnk , j
(
wnk

)
converges and φ′

λnk , j

(
wnk

) = 0. Now, repeating the same type of

arguments explored in the proof of Proposition 4.1, there is w ∈ W 1,p(x)
0

(
� j
) \ {0} ⊂

W 1,p(x)
(
�′

j

)
such that

wnk → w in W 1,p(x)(�′
j

)
, as k → ∞.

Furthermore, we also can prove that

cλnk , j = φλnk , j
(
wnk

)→ I j (w)

and

0 = φ′
λnk , j

(
wnk

)→ I ′
j (w).

Then, by ( f4),

lim
k

cλnk , j ≥ c j .

The last inequality together with item (i) implies

cλnk , j → c j , as k → ∞.

This establishes the asserted result.
��

In the sequel, let R > 1 verifying

0 < I j

(
1

R
w j

)
, I j (Rw j ) < c j , for j = 1, . . . , k. (6.1)

There holds that

c j = max
t∈[1/R2,1]

I j (t Rw j ), for j = 1, . . . , k.

Moreover, to simplify the notation, we rename the components � j of � in way such that
ϒ = {1, 2, . . . , l} for some 1 ≤ l ≤ k. Then, we define:

γ0(t1, . . . , tl)(x) =
l∑

j=1

t j Rw j (x), ∀(t1, . . . , tl) ∈ [1/R2, 1]l ,

�∗ =
{
γ ∈ C

([1/R2, 1]l , Eλ \ {0}) ; γ = γ0 on ∂[1/R2, 1]l
}
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and

bλ,ϒ = inf
γ∈�∗

max
(t1,...,tl )∈[1/R2,1]l

φλ

(
γ (t1, . . . , tl)

)
.

Next, our intention is proving that bλ,ϒ is a critical value for φλ. However, to do this, we
need to some technical lemmas. The arguments used are the same found in [3]; however, for
reader’s convenience, we will repeat their proofs

Lemma 6.2 For all γ ∈ �∗, there exists (s1, . . . , sl) ∈ [1/R2, 1]l such that
φ′

λ, j

(
γ (s1, . . . , sl)

)(
γ (s1, . . . , sl)

) = 0, ∀ j ∈ ϒ.

Proof Given γ ∈ �∗, consider γ̃ : [1/R2, 1]l → R
l such that

γ̃ (t) =
(
φ′

λ,1

(
γ (t)

)
γ (t), . . . , φ′

λ,l

(
γ (t)

)
γ (t)

)
, where t = (t1, . . . , tl).

For t ∈ ∂[1/R2, 1]l , it holds γ̃ (t) = γ̃0(t). From this, we observe that there is no t ∈
∂[1/R2, 1]l with γ̃ (t) = 0. Indeed, for any j ∈ ϒ ,

φ′
λ, j

(
γ0(t)

)
γ0(t) = I ′

j (t j Rw j )(t j Rw j ).

This form, if t ∈ ∂[1/R2, 1]l , then t j0 = 1 or t j0 = 1
R2 , for some j0 ∈ ϒ . Consequently,

φ′
λ, j0

(
γ0(t)

)
γ0(t) = I ′

j0(Rw j0)(Rw j0) or φ′
λ, j0

(
γ0(t)

)
γ0(t) = I ′

j0

(
1

R
w j0

)(
1

R
w j0

)
.

Therefore, if φ′
λ, j0

(
γ0(t)

)
γ0(t) = 0, we get I j0(Rw j0) ≥ c j0 or I j0

( 1
Rw j0

) ≥ c j0 , which is
a contradiction with (6.1).

Now, we compute the degree deg
(
γ̃ , (1/R2, 1)l , (0, . . . , 0)

)
. Since

deg
(
γ̃ , (1/R2, 1)l , (0, . . . , 0)

) = deg
(
γ̃0, (1/R

2, 1)l , (0, . . . , 0)
)
,

and, for t ∈ (1/R2, 1)l ,

γ̃0(t) = 0 ⇐⇒ t =
(
1

R
, . . . ,

1

R

)
,

we derive

deg
(
γ̃ , (1/R2, 1)l , (0, . . . , 0)

) �= 0.

This shows what was stated. ��

Proposition 6.3 If cλ,ϒ =
l∑

j=1

cλ, j and cϒ =
l∑

j=1

c j , then

(i) cλ,ϒ ≤ bλ,ϒ ≤ cϒ, ∀λ ≥ 1;
(ii) bλ,ϒ → cϒ, as λ → ∞;
(iii) φλ

(
γ (t)

)
< cϒ, ∀λ ≥ 1, γ ∈ �∗ and t = (t1, . . . , tl) ∈ ∂[1/R2, 1]l .

Proof (i) Once γ0 ∈ �∗,

bλ,ϒ ≤ max
(t1,...,tl )∈[1/R2,1]l

φλ

(
γ0(t1, . . . , tl)

) = max
(t1,...,tl )∈[1/R2,1]l

l∑

j=1

I j (t j Rw j ) = cϒ.
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Now, fixing s = (s1, . . . , sl) ∈ [1/R2, 1]l given in Lemma 6.2 and recalling that

cλ, j = inf
{
φλ, j (u) ; u ∈ W 1,p(x)(�′

j

) \ {0} and φ′
λ, j (u)u = 0

}
,

it follows that

φλ, j
(
γ (s)

) ≥ cλ, j , ∀ j ∈ ϒ.

From (3.9),

φλ,RN \�′
ϒ
(u) ≥ 0, ∀u ∈ W 1,p(x)(

R
N \ �′

ϒ

)
,

which leads to

φλ

(
γ (t)

) ≥
l∑

j=1

φλ, j
(
γ (t)

)
, ∀t = (t1, . . . , tl) ∈ [1/R2, 1]l .

Thus

max
(t1,...,tl )∈[1/R2,1]l

φλ

(
γ (t1, . . . , tl)

) ≥ φλ

(
γ (s)

) ≥ cλ,ϒ ,

showing that

bλ,ϒ ≥ cλ,ϒ ;
(ii) This limit is clear by the previous item, since we already know cλ, j → c j , as λ → ∞;
(iii) For t = (t1, . . . , tl) ∈ ∂[1/R2, 1]l , it holds γ (t) = γ0(t). From this,

φλ

(
γ (t)

) =
l∑

j=1

I j (t j Rw j ).

Writing

φλ

(
γ (t)

) =
l∑

j=1
j �= j0

I j (t j Rw j ) + I j0(t j0 Rw j0),

where t j0 ∈
{

1
R2 , 1

}
, from (6.1) we derive

φλ

(
γ (t)

) ≤ cϒ − ε,

for some ε > 0, so (iii).
��

Corollary 6.4 bλ,ϒ is a critical value of φλ, for λ sufficiently large.

Proof Assume b̃λ,ϒ is not a critical value of φ̃λ for some λ̃. We will prove that exists λ1 such
that λ̃ < λ1. Indeed, by item (iii) of Proposition 6.3, we have seen that

φλ

(
γ0(t)

)
< cϒ, ∀λ ≥ 1, t ∈ ∂[1/R2, 1]l .

This way

M = max
t∈∂[1/R2,1]l

φ̃λ

(
γ0(t)

)
< cϒ.
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Since bλ,ϒ → cϒ (item (ii) of Proposition 6.3), there exists λ1 > 1 such that if λ ≥ λ1, then

M < bλ,ϒ .

So, if λ̃ ≥ λ1, we can find τ = τ (̃λ) > 0 small enough, with the ensuing property

M < b̃λ,ϒ − 2τ. (6.2)

From the deformation’s lemma [31, Page 38], there is η : Eλ → Eλ such that

η
(
φ
b̃λ,ϒ+τ

λ̃

)
⊂ φ

b̃λ,ϒ−τ

λ̃
and η(u) = u, for u /∈ φ−1

λ̃

([b̃λ,ϒ − 2τ, b̃λ,ϒ + 2τ ]).
Then, by (6.2),

η
(
γ0(t)

) = γ0(t), ∀t ∈ ∂[1/R2, 1]l .
Now, using the definition of b̃λ,ϒ , there exists γ∗ ∈ �∗ satisfying

max
t∈[1/R2,1]l

φ̃λ

(
γ∗(t)

)
< b̃λ,ϒ + τ. (6.3)

Defining

γ̃ (t) = η
(
γ∗(t)

)
, t ∈ [1/R2, 1]l ,

due to (6.3), we obtain

φ̃λ

(
γ̃ (t)

) ≤ b̃λ,ϒ − τ, ∀t ∈ [1/R2, 1]l .
But since γ̃ ∈ �∗, we deduce

b̃λ,ϒ ≤ max
t∈[1/R2,1]l

φ̃λ

(
γ̃ (t)

) ≤ b̃λ,ϒ − τ,

a contradiction. So, λ̃ < λ1. ��

7 The proof of the main theorem

To prove Theorem 1.1, we need to find nonnegative solutions uλ for large values of λ, which
converges to a least energy solution in each � j ( j ∈ ϒ) and to 0 in �c

ϒ as λ → ∞. To this
end, we will show two propositions which together with the Propositions 4.1 and 5.1 will
imply that Theorem 1.1 holds.

Henceforth, we denote by

r = Rp+
l∑

j=1

(
1

p+
− 1

θ

)−1

c j , Bλ
r = {u ∈ Eλ ; �λ(u) ≤ r

}

and

φ
cϒ
λ = {u ∈ Eλ ; φλ(u) ≤ cϒ

}
.

Moreover, for small values of μ,

Aλ
μ = {u ∈ Bλ

r ; �λ,RN \�ϒ
(u) ≤ μ,

∣∣φλ, j (u) − c j
∣∣ ≤ μ, ∀ j ∈ ϒ

}
.
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We observe that

w =
l∑

j=1

w j ∈ Aλ
μ ∩ φ

cϒ
λ ,

showing that Aλ
μ ∩ φ

cϒ
λ �= ∅. Fixing

0 < μ <
1

4
min
j∈�

c j , (7.1)

we have the following uniform estimate of
∥
∥φ′

λ(u)
∥
∥ on the region

(
Aλ

2μ \ Aλ
μ

)
∩ φ

cϒ
λ .

Proposition 7.1 Letμ > 0 satisfying (7.1). Then, there exist�∗ ≥ 1andσ0 > 0 independent
of λ such that

∥
∥φ′

λ(u)
∥
∥ ≥ σ0, for λ ≥ �∗ and all u ∈

(
Aλ

2μ \ Aλ
μ

)
∩ φ

cϒ
λ . (7.2)

Proof We assume that there exist λn → ∞ and un ∈
(
Aλn

2μ \ Aλn
μ

)
∩ φ

cϒ
λn

such that

∥∥φ′
λn

(un)
∥∥→ 0.

Since un ∈ Aλn
2μ, this implies

(
�λn (un)

)
is a bounded sequence and, consequently, it follows

that
(
φλn (un)

)
is also bounded. Thus, passing a subsequence if necessary, we can assume

φλn (un) converges. Thus, from Proposition 4.1, there exists 0 ≤ u ∈ W 1,p(x)
0

(
�ϒ

)
such that

u|� j
, j ∈ ϒ , is a solution for (Pj ),

�λn ,RN \�ϒ
(un) → 0 and φλn , j (un) → I j (u).

We know that c j is the least energy level for I j . So, if u|� j
�= 0, then I j (u) ≥ c j . But since

φλn (un) ≤ cϒ , we must analyze the following possibilities:

(i) I j (u) = c j , ∀ j ∈ ϒ ;
(ii) I j0(u) = 0, for some jo ∈ ϒ .

If (i) occurs, then for n large, it holds

�λn ,RN \�ϒ
(un) ≤ μ and

∣∣φλn , j (un) − c j
∣∣ ≤ μ, ∀ j ∈ ϒ.

So un ∈ Aλn
μ , a contradiction.

If (ii) occurs, then
∣∣φλn , j0(un) − c j0

∣∣→ c j0 > 4μ,

which is a contradiction with the fact that un ∈ Aλn
2μ. Thus, we have completed the proof. ��

Proposition 7.2 Let μ > 0 satisfying (7.1) and �∗ ≥ 1 given in the previous proposition.
Then, for λ ≥ �∗, there exists a solution uλ of (Aλ) such that uλ ∈ Aλ

μ ∩ φ
cϒ
λ .

Proof Let λ ≥ �∗. Assume that there are no critical points of φλ inAλ
μ ∩ φ

cϒ
λ . Since φλ is a

(PS) functional, there exists a constant dλ > 0 such that
∥∥φ′

λ(u)
∥∥ ≥ dλ, for all u ∈ Aλ

μ ∩ φ
cϒ
λ .
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From Proposition 7.1, we have
∥
∥φ′

λ(u)
∥
∥ ≥ σ0, for all u ∈

(
Aλ

2μ \ Aλ
μ

)
∩ φ

cϒ
λ ,

where σ0 > 0 does not depend on λ. In what follows,� : Eλ → R is a continuous functional
verifying

�(u) = 1, for u ∈ Aλ
3
2μ

, �(u) = 0, for u /∈ Aλ
2μ and 0 ≤ �(u) ≤ 1, ∀u ∈ Eλ.

We also consider H : φ
cϒ
λ → Eλ given by

H(u) =
{

−�(u)
∥
∥Y (u)

∥
∥−1

Y (u), for u ∈ Aλ
2μ,

0, for u /∈ Aλ
2μ,

where Y is a pseudo-gradient vector field for �λ on K = {
u ∈ Eλ ; φ′

λ(u) �= 0
}
. Observe

that H is well defined, once φ′
λ(u) �= 0, for u ∈ Aλ

2μ ∩ φ
cϒ
λ . The inequality

∥
∥H(u)

∥
∥ ≤ 1, ∀λ ≥ �∗ and u ∈ φ

cϒ
λ ,

guarantees that the deformation flow η : [0,∞) × φ
cϒ
λ → φ

cϒ
λ defined by

dη

dt
= H(η), η(0, u) = u ∈ φ

cϒ
λ

verifies

d

dt
φλ

(
η(t, u)

) ≤ −1

2
�
(
η(t, u)

)∥∥φ′
λ

(
η(t, u)

)∥∥ ≤ 0, (7.3)
∥∥∥∥
dη

dt

∥∥∥∥
λ

= ∥∥H(η)
∥∥

λ
≤ 1 (7.4)

and
η(t, u) = u for all t ≥ 0 and u ∈ φ

cϒ
λ \ Aλ

2μ. (7.5)

We study now two paths, which are relevant for what follows:
• The path t �→ η

(
t, γ0(t)

)
, where t = (t1, . . . , tl) ∈ [1/R2, 1]l .

The definition of γ0 combined with the condition on μ gives

γ0(t) /∈ Aλ
2μ, ∀t ∈ ∂[1/R2, 1]l .

Since

φλ

(
γ0(t)

)
< cϒ, ∀t ∈ ∂[1/R2, 1]l ,

from (7.5), it follows that

η
(
t, γ0(t)

) = γ0(t), ∀t ∈ ∂[1/R2, 1]l .
So, η

(
t, γ0(t)

) ∈ �∗, for each t ≥ 0.
• The path t �→ γ0(t), where t = (t1, . . . , tl) ∈ [1/R2, 1]l .
We observe that

supp
(
γ0(t)

) ⊂ �ϒ

and

φλ

(
γ0(t)

)
does not depend on λ ≥ 1,
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forall t ∈ [1/R2, 1]l . Moreover,

φλ

(
γ0(t)

) ≤ cϒ, ∀t ∈ [1/R2, 1]l

and

φλ

(
γ0(t)

) = cϒ if, and only if, t j = 1

R
, ∀ j ∈ ϒ.

Therefore

m0 = sup
{
φλ(u) ; u ∈ γ0

([1/R2, 1]l) \ Aλ
μ

}

is independent of λ and m0 < cϒ . Now, observing that there exists K∗ > 0 such that
∣
∣φλ, j (u) − φλ, j (v)

∣
∣ ≤ K∗‖u − v‖λ,�′

j
, ∀u, v ∈ Bλ

r and ∀ j ∈ ϒ,

we derive

max
t∈[1/R2,1]l

φλ

(
η
(
T, γ0(t)

)) ≤ max

{
m0, cϒ − 1

2K∗
σ0μ

}
, (7.6)

for T > 0 large.
In fact, writing u = γ0(t), t ∈ [1/R2, 1]l , if u /∈ Aλ

μ, from (7.3),

φλ

(
η(t, u)

) ≤ φλ(u) ≤ m0, ∀t ≥ 0,

and we have nothing more to do. We assume then u ∈ Aλ
μ and set

η̃(t) = η(t, u), d̃λ = min {dλ, σ0} and T = σ0μ

K∗d̃λ

.

Now, we will analyze the ensuing cases:

Case 1: η̃(t) ∈ Aλ
3
2μ

, ∀t ∈ [0, T ].
Case 2: η̃(t0) ∈ ∂Aλ

3
2μ

, for some t0 ∈ [0, T ].
Analysis of Case 1

In this case, we have �
(
η̃(t)

) = 1 and
∥∥φ′

λ

(
η̃(t)

)∥∥ ≥ d̃λ for all t ∈ [0, T ]. Hence, from
(7.3),

φλ

(
η̃(T )

) = φλ(u) +
T∫

0

d

ds
φλ

(
η̃(s)

)
ds ≤ cϒ − 1

2

T∫

0

d̃λ ds,

that is,

φλ

(
η̃(T )

) ≤ cϒ − 1

2
d̃λT = cϒ − 1

2K∗
σ0μ,

showing (7.6).

Analysis of Case 2
In this case, there exist 0 ≤ t1 ≤ t2 ≤ T satisfying

η̃(t1) ∈ ∂Aλ
μ,

η̃(t2) ∈ ∂Aλ
3
2μ

,
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and

η̃(t) ∈ Aλ
3
2μ

\ Aλ
μ, ∀t ∈ (t1, t2].

We claim that

∥
∥η̃(t2) − η̃(t1)

∥
∥ ≥ 1

2K∗
μ.

Setting w1 = η̃(t1) and w2 = η̃(t2), we get

�λ,RN \�ϒ
(w2) = 3

2
μ or

∣
∣φλ, j0(w2) − c j0

∣
∣ = 3

2
μ,

for some j0 ∈ ϒ . We analyze the latter situation, once that the other one follows the same
reasoning. From the definition of Aλ

μ,
∣
∣φλ, j0(w1) − c j0

∣
∣ ≤ μ,

consequently,

‖w2 − w1‖ ≥ 1

K∗
∣∣φλ, j0(w2) − φλ, j0(w1)

∣∣ ≥ 1

2K∗
μ.

Then, by mean value theorem, t2 − t1 ≥ 1
2K∗ μ and, this form,

φλ

(
η̃(T )

) ≤ φλ(u) −
T∫

0

�
(
η̃(s)

)∥∥φ′
λ

(
η̃(s)

)∥∥ ds

implying

φλ

(
η̃(T )

) ≤ cϒ −
t2∫

t1

σ0 ds = cϒ − σ0(t2 − t1) ≤ cϒ − 1

2K∗
σ0μ,

which proves 7.6. Fixing η̂(t1, . . . , tl) = η
(
T, γ0(t1, . . . , tl)

)
, we have that η̂ ∈ �∗ and,

hence,

bλ,� ≤ max
(t1,...,tl )∈[1/R2,1]

φλ

(
η̂(t1, . . . , tl)

) ≤ max

{
m0, cϒ − 1

2K∗
σ0μ

}
< cϒ,

which contradicts the fact that bλ,ϒ → cϒ . ��

Proof of Theorem 1.1 According Proposition 7.2, for μ satisfying (7.1) and �∗ ≥ 1, there
exists a solution uλ for (Aλ) such that uλ ∈ Aλ

μ ∩ φ
cϒ
λ , for all λ ≥ �∗.

Claim: There are λ0 ≥ �∗ and μ0 > 0 small enough, such that uλ is a solution for
(
Pλ

)
for

λ ≥ �0 and μ ∈ (0, μ0).
Indeed, assume by contradiction that there are λn → ∞ and μn → 0, such that (uλn ) is

not a solution for (Pλn ). From Proposition 7.2, the sequence (uλn ) verifies:

(a) φ′
λn

(uλn ) = 0, ∀n ∈ N;
(b) �λn ,RN \�ϒ

(uλn ) → 0;
(c) φλn , j (uλn ) → c j , ∀ j ∈ ϒ.
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The item (b) ensures we can use Proposition 5.1 to deduce uλn is a solution for
(
Pλn

)
, for

large values of n, which is a contradiction, showing this way the claim.
Now, our goal is to prove the second part of the theorem. To this end, let (uλn ) be a

sequence verifying the above limits. Since φλn (uλn ) is bounded, passing a subsequence, we
obtain that φλn (uλn ) → c. This way, using Proposition 4.1 combined with item (c), we derive
uλn converges inW

1,p(x)
(
R
N
)
to a function u ∈ W 1,p(x)

(
R
N
)
, which satisfies u = 0 outside

�ϒ and u|� j
, j ∈ ϒ , is a least energy solution for

{
−�p(x)u + Z(x)u = f (u), in � j ,

u ∈ W 1,p(x)
0

(
� j
)
, u ≥ 0, in � j .
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