Skip to main content
Log in

Solving \(k\)-cluster problems to optimality with semidefinite programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper deals with the computation of exact solutions of a classical NP-hard problem in combinatorial optimization, the \(k\)-cluster problem. This problem consists in finding a heaviest subgraph with \(k\) nodes in an edge weighted graph. We present a branch-and-bound algorithm that applies a novel bounding procedure, based on recent semidefinite programming techniques. We use new semidefinite bounds that are less tight than the standard semidefinite bounds, but cheaper to get. The experiments show that this approach is competitive with the best existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billionnet, A.: Different formulations for solving the heaviest k-subgraph problem. Inf. Syst. Oper. Res. 43(3), 171–186 (2005)

    MathSciNet  Google Scholar 

  3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2006)

    Article  MathSciNet  Google Scholar 

  4. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discret. Appl. Math. 157(6), 1185–1197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnans, J.F., Gilbert, JCh.: Numerical Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  7. Borsdorf, R., Higham, N.: A preconditionned newton algorithm for the nearest correlation matrix. Submitted (2008)

  8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. (Series B) 95, 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 7–39 (1984)

    Article  MathSciNet  Google Scholar 

  10. Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res. 46(1), 48–60 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faye, A., Roupin, F.: A cutting planes algorithm based upon a semidefinite relaxation for the quadratic assignment problem. In: ESA 2008, LNCS 3669, pp. 850–861 (2005)

  12. Faye, A., Roupin, F.: Partial lagrangian for general quadratic programming. 4’OR Q. J. Oper. Res. 5(1), 75–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbert, JCh., Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program. 45, 407–435 (1989)

    Article  MATH  Google Scholar 

  16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 6, 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  17. Han, Q., Ye, Y., Zhang, J.: An improved rounded method and semidefinite programming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Helmberg, C.: A C++ implementation of the Spectral Bundle Method. http://www-user.tu-chemnitz.de/ helmberg/SBmethod/, Version 1.1.3 (2004)

  19. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, N.: Computing a nearest symmetric correlation matrix-a problem from finance. IMA J. Numer. Anal. 22(3), 329–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993). Two volumes

    Google Scholar 

  23. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph partitioning problems. J. Combin. Optim. 10(2), 133–167 (2005)

    Article  MATH  Google Scholar 

  24. Keil, J.M., Brecht, T.B.: The complexity of clustering in planar graphs. J. Comb. Math. Comb. Comput. 9, 155–159 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36, 1025–1071 (2005)

    Article  MathSciNet  Google Scholar 

  26. Kočvara, M., Stingl, M.: On the solution of large-scale sdp problems by the modified barrier method using iterative solvers. Math. Program. 109(2), 413–444 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krarup, J., Pisinger, D., Plastria, F.: Discrete location problems with push-pull objectives. Discret. Appl. Math. 123, 363–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lemaréchal C., Oustry F. (1999) Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Research report 3710, INRIA

  29. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for the densest k-subgraph problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  31. Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26(1), 272–284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Malick, J.: Spherical constraint in Boolean quadratic programming. J. Glob. Optim. 39(4), 609–622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malick, J., Roupin, F.: Numerical study of SDP bounds for the \(k\)-cluster problem. E. Notes Discret. Math. 36(1), 399–406 (2010). Proceedings of ISCO 2010

    Article  Google Scholar 

  34. Malick, J., Roupin, F.: On the bridge between combinatorial optimization and nonlinear optimization: a family of semidefinite bounds leading to newton-like methods. To appear in Math Programming B. http://hal.archives-ouvertes.fr/hal-00662367 (2012)

  35. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martin, A., Achterberg, T., Koch, T.: Branching rules revisited. Oper. Res. Lett. 33(1), 342–354 (2005)

    Google Scholar 

  37. Nocedal, J., Wright, S.: Numerical Optimization. Springer, NY (1999)

    Book  MATH  Google Scholar 

  38. Perl, Y., Shiloach, Y.: Efficient optimization of monotonic functions on trees. SIAM J. Algebr. Discret. Methods 4(4), 512–516 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pisinger, D.: Upper bounds and exact algorithms for p-dispersion problems. Comput. Oper. Res. 33, 1380–1398 (2006)

    Article  MATH  Google Scholar 

  40. Plateau, M.-C.: Reformulations quadratiques convexes pour la programmation quadratique en variables 0–1. PhD thesis, Conservatoire National des Arts et Métiers (CNAM, Paris) (2006)

  41. Qi, H., Sun, D.: Quadratic convergence and numerical experiments of Newton’s method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyedral relaxations. Math. Program. 121, 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Roupin, F.: From linear to semidefinite programming: an algorithm to obtain semidefinite relaxations for bivalent quadratic problems. J. Comb. Optim. 8(4), 469–493 (2004)

    Google Scholar 

  44. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tutuncu, R.H., Toh, K.C., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3(1), 135–164 (2006)

    Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS (“GdR Recherche Opérationnelle”) and Grenoble University (Université Joseph Fourier, through “Pôle Math-STIC”). We thank Quentin Monnet and Lise-Marie Veillon (Master students of ENSIIE, Evry, France) for their help in developing parts of the solver. We also thank the two anonymous referees for numerous suggestions about a preliminary version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Malick.

Appendix: Formulation of the \(k\)-cluster as a quadratic \(\{-1,1\}\)-problem

Appendix: Formulation of the \(k\)-cluster as a quadratic \(\{-1,1\}\)-problem

The spherical constraint appears more easily on purely quadratic \(\{-1,1\}\)-optimization problems (see [32]). The second reformulation in Sect. 2 considers the transformation of the \(k\)-cluster problem, from the natural modeling as a quadratic \(\{0,1\}\)-problem (with linear and quadratic constraints), to a purely quadratic \(\{-1,1\}\)-problem. We specify here this transformation, that uses standard techniques.

Lemma 3

With the notation of this section, the \(k\)-cluster problem (1) is equivalent to the quadratic problem in dimension \(n+ 1\)

$$\begin{aligned} \left\{ \begin{array}{l} \max \quad x^{\top }Q\,x\\ \quad x^{\top }Q_j\,x = 4k-2n, \ \ j\in \{0,\ldots ,n\}\\ \quad x\in \{-1,1\}^{n+1} \end{array}\right. \end{aligned}$$
(17)

where the symmetric \((n+1)\times (n+1)\)-matrices \(Q\) and \(Q_j\ (j\in \{0,\ldots ,n\})\) are defined by (5). More precisely, this equivalence means that the optimal values of (1) and (17) are the same and that the optimal solutions coincide as follows:

  • if \(\bar{z}\) is a solution of (1) then \(\bar{x} = (1, 2\bar{z}-e)\) is a solution of (1);

  • if \(\bar{x}\) is a solution of (17), then \(\bar{z} = ((\bar{x}_0\bar{x}_1,\ldots , \bar{x}_0\bar{x}_{n}) +e)/2\) is a solution of (1).

Proof

Operate first the change of variable \(x=2z-e\), and express the objective and the constraints with respect to \(x=(x_1,\ldots ,x_n)\in \mathbb R ^n\). Just develop the objective

$$\begin{aligned} {z}^{\top }Wz = \frac{{(x+e)}^{\top }}{2}W\frac{(x+e)}{2} = \frac{1}{4}({x}^{\top }Wx + 2 {x}^{\top }We + {e}^{\top }We), \end{aligned}$$

and similarly transform \({e}^{\top }z = k\) as \({e}^{\top }x = 2k-n\), and for all \(j=1,\ldots ,n\)

$$\begin{aligned} {z\!}^{\top }\!C_jz&= 2kz_j \iff {x\!}^{\top }\!C_jx + 2 {x\!}^{\top }\!(C_je - 2ke_j)\\&= 4k - {e\!}^{\top }\!C_je \iff {x\!}^{\top }\!C_jx + 2 {x\!}^{\top }\!\tilde{e}_j = 4k - 2n \end{aligned}$$

the last equivalence coming from \({e}^{\top }C_je= 2n\) and \(\tilde{e}_j = C_je - 2ke_j\). So we get quadratic problem in \(x\in \{-1,1\}^n\)

$$\begin{aligned} \left\{ \begin{array}{l} \max \quad \frac{1}{4}({x}^{\top }Wx + 2 {x}^{\top }We + {e}^{\top }We)\\ \quad {e}^{\top }x = 2k-n\\ \quad {x}^{\top }C_jx + 2 {x}^{\top }\tilde{e}_j= 4k-2n, \ \ j\in \{1,\ldots ,n\}\\ \quad x_i\in \{-1,1\} \ \ i\in \{1,\ldots ,n\}. \end{array}\right. \end{aligned}$$
(18)

The formulation of (3) is equivalent to (18) in the sense that the optimal values are the same and the solutions are in one-to-one correspondance with \(x=2z-e\).

We consider now that the following purely quadratic problem with the additional variable \(x_0\in \{-1,1\}\)

$$\begin{aligned} \left\{ \begin{array}{l} \max \quad \frac{1}{4}({x}^{\top }Wx + 2 {x}^{\top }We\,x_0 + {e}^{\top }We\,{x_0}^2)\\ \quad {e}^{\top }x\, x_0 = 2k-n\\ \quad {x}^{\top }C_jx + 2 {x}^{\top }\tilde{e}_j\,x_0= 4k-2n, \ \ j\in \{1,\ldots ,n\}\\ \quad x_i\in \{-1,1\} \ \ i\in \{0,\ldots ,n\}. \end{array}\right. \end{aligned}$$
(19)

We observe that this problem is equivalent to (17) in view of the definitions of the matrices in (5). So we just have to establish that (18) is equivalent to (19); we do so in two steps. If \((x_1,\ldots ,x_n)\) is feasible in (18), then obviously \((1,x)\) and \((-1,-x)\) are both feasible in (19), with same objective value. It follows that \(\mathrm{val}(19) \le \mathrm{val}(18)\). Conversely if \((x_0,\ldots ,x_n)\) is feasible in (19), then \(x_0=\pm 1\) and \((x_0x_1,\ldots ,x_0x_n)\) is feasible in (18) with the same objective value. It follows that \(\mathrm{val}(18)\le (19)\), so that we have the equality in fact. The relation between the argmins then becomes clear.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malick, J., Roupin, F. Solving \(k\)-cluster problems to optimality with semidefinite programming. Math. Program. 136, 279–300 (2012). https://doi.org/10.1007/s10107-012-0604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0604-1

Keywords

Mathematics Subject Classification

Navigation