Skip to main content
Log in

Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we consider problem (P) of minimizing a quadratic function q(x)=x t Qx+c t x of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q+diag(u)) is positive semidefinite. Then, using the fact that x i 2=x i, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved.

We carry out computational tests using the generator of (Pardalos and Rodgers, 1990) and we compare our two solution methods to several other exact solution methods. Furthermore, we report computational results for the max-cut problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beasley, J.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech. Rep., Management School, Imperial College, London, UK, 1998

  2. Beasley, J.E.: Or-library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41 (11), 1069–1072 (1990)

    Google Scholar 

  3. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boros, E., Hammer, P.L., Tavares, G.: The pseudo-boolean optimization website, 2005. http://rutcor. rutgers.edu/~pbo/index.htm

  5. Delaporte, G., Jouteau, S., Roupin, F.: SDP_S : A tool to formulate and solve semidefinite relaxations for bivalent quadratic problems 2002. http://semidef.free.fr/

  6. Gomez, C.: (Ed.) Engineering and Scientific Computing With Scilab. Springer Verlag, 1999

  7. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming The Scientific Press (now an imprint of Boyd & Fraser Publishing Co.), Danvers, MA, USA, 1993

  8. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manag. Sci. 44, 336–345 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: .878-approximation for MAX CUT and MAX 2SAT. In: Proc. 26 th ACM Symp. Theor. Comput. 422–431 (1994)

  10. Hammer, P.L., Hansen, P., Simeone, B.: Roof duality complementation and persistency in quadratic 0-1 optimization. Math. Prog. 28, 121–155 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Hammer, P.L., Rubin, A.A.: Some remarks on quadratic programming with 0–1 variables. Revue Francaise d'Informatique et de Recherche Operationnelle 4 (3), 67–79 (1970)

    Google Scholar 

  12. Hansen, P., Jaumard, B., Meyer, C.: A simple enumerative algorithm for unconstrained 0-1 quadratic programming. Technical Report G-2000-59, Les Cahiers du GERAD, 2000

  13. Helmberg, C., Rendl, F.: Solving quadratic (01)-problems by semidefinite programs and cutting planes. Math. Prog. 82, 291–315 (1998)

    MathSciNet  Google Scholar 

  14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10 (3), 673–696 (2000)

    Article  MathSciNet  Google Scholar 

  15. Iasemidis, L.D., Pardalos, P.M., Sackellares, J.C., Shiau, D.-S.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combinatorial Optim. 5 (1), 9–26 (2001)

    Article  MathSciNet  Google Scholar 

  16. ILOG. ILOG CPLEX 8.0 Reference Manual. ILOG CPLEX Division, Gentilly, France, 2002

  17. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Meth. Software 15, 201–224 (2001)

    MATH  Google Scholar 

  18. Körner, F.: A tight bound for the Boolean quadratic optimization problem and its use in a branch and bound algorithm. Optim. 19 (5), 711–721 (1988)

    Google Scholar 

  19. Körner, F., Richter, C.: Zur effektiven Lösung von Booleschen, quadratischen Optimierungsproblemen. Numerische Mathematik 40, 99–109 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solvability of convex quadratic programming. Doklady Akademii Nauk SSSR, 248 (5), 1049–1051 (1979). See also, Soviet Mathematics Doklady volume 20, 1108–1111 (1979)

    Google Scholar 

  21. Lemaréchal, C., Oustry, F.: Hadjisavvas, N., Pardalos, P.M. (ed.) SDP relaxations in combinatorial optimization from a Lagrangian point of view Advances in Convex Analysis and Global Optimization Kluwer, 2001, pp. 119–134

  22. McBride, R., Yormark, J.: An implicit enumeration algorithm for quadratic integer programming. Manag. Sci. 26, 282–296 (1980)

    MATH  MathSciNet  Google Scholar 

  23. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic programming problem. BioSyst. 78 (1–3), 99–118 (2004)

  24. Muramatsu, M., Suzuki, T.: A new second order cone programming relaxation for max-cut problems. J. Oper. Res. Soc. of Japan 46, 164–177 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic 0-1 programming. Comput. 45, 131–144 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Poljak, S., Wolkowicz, H.: Convex relaxations of (01)-quadratic programming. Math. Oper. Res. 20, 550–561 (1995)

    MathSciNet  Google Scholar 

  27. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (01)-quadratic programming. J. Global Optim. 7, 51–73 (1995)

    Article  MathSciNet  Google Scholar 

  28. Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 236, 731–734 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourour Elloumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billionnet, A., Elloumi, S. Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem. Math. Program. 109, 55–68 (2007). https://doi.org/10.1007/s10107-005-0637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0637-9

Keywords

Navigation